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1 Introduction

Langlands correspondences are non-abelian, and mostly still conjectural, generali-
sations of class field theory. Recall that, given a non-Archimedean local field F with
positive residual characteristic p and separable closure F, the local version of class
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field theory provides a natural identification of continuous C-valued characters of
ΓF := Gal(F/F) with smooth complex characters (i.e. irreducible smooth repre-
sentations) of F× = GL1(F). In 1967, Langlands conjectured that some analogous
correspondence should exist for higher-dimensional representations (characters be-
ing one-dimensional representations), and that n-dimensional continuous represen-
tations of ΓF should naturally correspond to some admissible smooth representations
of GLn(F). He even went further, as he conjectured later that such a statement should
hold for reductive groups G other than GLn if one prescribes certain conditions on
the image of the Galois representations involved in such correspondences, and if one
allows correspondences with finite fibres that are not necessarily one-to-one. More
specifically, we should be able to gather the relevant representations of G = G(F)
into disjoint sets called packets, each of which should correspond to a single Galois
representation. For more details and explanations of this so-called classical setting,
in which the representations of both G and ΓF are defined over C, the reader should
for instance refer to [Bor76].

In the last decades, congruences between modular forms as well as deformations
of p-modular Galois representations have played important roles in the proofs of
some major arithmetical results, such as Wiles’ proof of Shimura–Taniyama–Weil
conjecture [Wil95] and Kisin’s work on the Fontaine–Mazur conjectures [Kis09].
These advances motivate in turn the search for analogues of Langlands correspon-
dences that classify representations with coefficients in rings other than C. The
latest examples are given by p-modular Langlands correspondences, which take
coefficients in an algebraically closed field of characteristic p, and p-adic Lang-
lands correspondences, which take coefficients in a (large enough) finite extension
of Qp . In both of these settings, while we can often understand the Galois side of
the correspondence, the so-called automorphic counterpart is still very mysterious
[AHHV16], even when studying representations of GL2(F) [BP12, Le19, Wu19].

A natural question in this setting is how compatible the p-adic and p-modular
statements are. More precisely, if E is a finite extension of Qp with ring of integers
O, maximal ideal p, and residue field k = O/p, then any representation π defined
over O naturally gives (via reduction modulo p) a representation π over k. On
the other hand, given a representation over k, deformation theory allows us to
study representations over O whose reduction modulo p is isomorphic to π. The
ability to move between characteristic p and characteristic zero naturally leads to
the following kind of functoriality problem: let k be an algebraically closed field of
characteristic p and let π be an irreducible smooth k-representation of a p-adic group
G that corresponds (under an appropriate p-modular Langlands correspondence) to
a continuous representation σ of ΓF . Is it possible to relate deformation theories for
σ and π under an appropriate p-adic Langlands correspondence? Equivalently, how
do reduction modulo p and deformation theory help to connect the aforementioned
p-modular and p-adic Langlands correspondences? Note that the ability to answer
these questions through deformation theory is a keystone in Colmez’s proof of p-adic
Langlands correspondences for GL2(Qp) for p ≥ 5 [Col10, Kis10], so it is natural to
consider themwhen interested in p-adic Langlands correspondences for other p-adic
groups.
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To our knowledge, this has not been studiedmuch besides theGLn(F) case, even in
the `-adic case (i.e. when k is an algebraically closed field of positive characteristic
` , p, see [Vig96]), though the relevant deformations in this setting are quite
well understood on the Galois side [BG19, BP20]. In a current work in progress,
the two first authors study the case of special linear group SL2(Qp), which is the
first group for which a semisimple p-modular Langlands correspondence involving
actual packets has been proved [Abd14]. The present paper focuses on the case of
the quasi-split unramified unitary group G = U(1,1)(Qp2/Qp), which is the first
non-split group for which a semisimple p-modular Langlands correspondence has
been settled [Koz16]. Note that this correspondence also involves actual packets: it is
not a one-to-one, but a finite-to-one, correspondence. Our question is the following:
how does this semisimple correpondence behave under deformations, i.e. when the
objects it involves are lifted to p-adic representations/parameters?

This paper explains what is known so far in this direction for non-supercuspidal
objects. As above, let G = U(1,1)(Qp2/Qp). First, in Section 2, we review basic
definitions about representations of p-adic groups in the context of the group G,
including the definition of a non-supercuspidal representation of G. We finish the
section with the classification of irreducible smooth non-supercuspidal representa-
tions ofG overFp , whereFp denotes an algebraic closure of the residue field ofQp . In
Section 3 we introduce Langlands parameters and describe where non-supercuspidal
representations fit into the semisimple Langlands correspondence Kozioł attached to
representations of G [Koz16]. In Section 4 we begin to explore how the semisimple
Langlands correspondence behaves when lifted to characteristic 0. To do so, we
describe recent results of Hauseux–Sorensen–Schmidt [HSS18, HSS19] about the
behaviour of parabolic induction under deformation, and we explicitly determine
which representations of G their results apply to on the automorphic side.

Finally, in Section 5 we use recent work of Kozioł–Morra to study how the Galois
side of the correspondence behaves under deformation [KM20]. Our method here is
to use the theory of Kisin modules to better understand the deformations of interest.
The distinction between supercuspidal and non-supercuspidal representations has a
counterpart on the Galois side of the correspondence, but we do not need to make
this distinction for the main results of Section 5. We can afford to be more general
in this section because the results on the Galois side are uniform. (In contrast, the
construction and deformations of supercuspidal representations on the automorphic
side involves different techniques than for their non-supercuspidal counterparts.) We
point out open problems related to deformations on both sides of the Langlands
correspondence that are the subject of work in progress.

General notation

We fix a prime integer p. We let Qp denote the field of p-adic numbers and we fix a
separable closure Qp of Qp , as well as an algebraic closure Fp of the residue field
Fp of Qp . We let Zp denote the ring of integers of Qp . Given any positive integer
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n, we let Qpn be the unique unramified extension of degree n of Qp in Qp and we
denote by Zpn its ring of integers. We fix an isomorphism Zpn/pZpn → Fpn ⊂ Fp
identifying the residue field of Qpn with Fpn , and we write x ∈ Fpn for the image of
x ∈ Zpn under the composite map Zpn � Zpn/pZpn → Fpn . These maps extend
to a reduction map Zp → Fp , which we also denote x 7→ x, and which allows us to
identify the residue field of Qp with Fp .

Let c denote the nontrivial element of Gal(Qp2/Qp) and, for g = ( x y
z w ) ∈

GL2(Qp2 ), write c(g) for
(
c(x) c(y)
c(z) c(w)

)
. We write G for the unramified quasi-split

unitary group in two variables defined over Qp and set G = G(Qp). As usual, and
more concretely, we identify G = U(1,1)(Qp2/Qp) with the following subgroup of
GL2(Qp2 ), where g∗ = c(g)t denotes the conjugate transpose of g ∈ GL2(Qp2 ):

G =
{
g ∈ GL2(Qp2 ) | g∗

(
0 1
1 0

)
g =

(
0 1
1 0

)}
.

We write I2 =
( 1 0

0 1
)
for the 2 × 2 identity matrix. We let B be the subgroup of

upper-triangular matrices in G. It is a Borel subgroup of G with Levi decomposition
B = TU, where U denotes the unipotent radical of B and T the maximal torus of G
made of all diagonal matrices in G:

T =
{
t(x) :=

(
x 0
0 c(x)−1

)
, x ∈ Q×

p2

}
.

Note that U is an abelian group, isomorphic to the additive group (Qp,+). We let
B− be the opposite Borel to B with respect to T . Note that B− is nothing but the
subgroup of lower-triangular matrices in G.

We let W be the Weyl group of G. Recall that we have W = NG(T)/T , where we
write NG(T) for the normaliser of T in G. The group W has two elements, and we let
s0 denote the non-trivial one. A representative of s0 in NG(T) is given by the matrix
s =

( 0 1
1 0

)
.

We let Gder = SU(1,1)(Qp2/Qp) denote the derived group of G: it consists of
all matrices in G with determinant 1. Recall that, once we fix an element ε ∈ Qp2

such that Qp2 = Qp(ε) and c(ε) = −ε, conjugation by the element
(
ε 0
0 1

)
defines a

isomorphism from Gder to SL2(Qp).
Given any ring R, any character χ : H → R× of a groupH, and any positive integer

n, we write χn : H → R× for the R-valued character of H given by χn(h) := χ(h)n.
For any group H, we write 1H for the trivial representation of H over Fp .

Given any finite extension F/Qp , we write ΓF := Gal(Qp/F) for its absolute
Galois group and IF ⊂ ΓF for the inertia subgroup of ΓF . We fix an element
ϕ ∈ ΓQp such that the image of ϕ in the abelianisation Γab

Qp
is equal to the image of

p−1 under the reciprocity map Q×p → Γab
Qp

of local class field theory. It is useful to
recall that we have the following short exact sequence, where WQp ⊂ ΓQp denotes
the Weil group of Qp and 〈ϕ〉 ' Z denotes the subgroup of ΓQp generated by ϕ:
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1 −→ IQp −→ WQp −→ 〈ϕ〉 −→ 1 .

2 Non-supercuspidal representations of G over Fp

In this section, we recall the classification of irreducible smooth non-supercuspidal
representations of G = U(1,1)(Qp2/Qp) over Fp , as first established in [Abd11,
Chapitre 5]. Given a commutative ring A, recall that a representation (π,V) of G
on an A-module V is called smooth if every element of V has open stabiliser in
G. Equivalently, this means that V can be written as

⋃
K

VK , where the union is

taken over the open subgroups K of G, and where VK := {v ∈ V | π(k)v =
v for all k ∈ K} denotes the subspace of K-fixed vectors in V . We write Mod∞G(A)
for the category of smooth representations ofG over A, and define similarlyMod∞

Γ
(A)

for any topological group Γ.
Given any closed subgroup H of G and any smooth A[H]-module V , we set

IndGH (V) = { f : G→ V | there exists a compact open subgroup K f ⊂ G such that
f (hgk) = h · f (g) for all h ∈ H,g ∈ G, k ∈ K f } .

The A-module IndGH (V) is naturally endowed with a smooth action of G by right
translations, and the corresponding functor IndGH : Mod∞H → Mod∞G is called smooth
induction from H to G. A particular case of smooth induction is given by parabolic
induction, when H is a (proper) parabolic subgroup of G. In our setting, G is of
relative rank 1 over F, hence if H is a proper parabolic subgroup, we can assume
without loss of generality that H = B is the Borel subgroup defined above. Parabolic
induction is then defined as follows: given a smooth character χ : T → A×, we can
inflate χ to a character of B trivial on U (still denoted by χ) and consider IndGB (χ).

Remark 2.1 Note that IndGB actually defines a functorMod∞,admT (A) → Mod∞,adm
G

(A),
where we write Mod∞,admX (A) for the full subcategory of Mod∞X (A) whose objects
are admissible representations, i.e. such that VK is an A-module of finite type for
any compact open subgroup K of G.

When classifying irreducible smooth representations of G over A = Fp , a natural
first step is to study parabolically induced representations, not only because of their
uniform and easy construction, but also because they reflect representations of G that
come from (proper) reductive subgroups ofG. This leads to the following definition.

Definition 2.2 Let π be an irreducible smooth representation of G over A.

• We say that π is non-supercuspidal if π is isomorphic to a subquotient of IndGB (χ)
for some smooth character χ : T → A×.

• We say that π a principal series representation if π is isomorphic to a parabolically
induced representation IndGB (χ) for some smooth character χ : T → A×.



6 R. Abdellatif, A. David, B. Romano, and H. Wiersema

Following [Abd11, Théorème 5.1.2], we know that isomorphism classes of irre-
ducible smooth non-supercuspidal representations of G over Fp split into three
disjoint families: characters, principal series representations, and special series rep-
resentations. We now recall the explicit description of these objects, as stated in
[Koz16, Theorem 4.3]. This requires us to introduce the following notation. For any
λ ∈ F

×

p , we denote by µλ : Qp2 → F
×

p the smooth character trivial on Z×
p2 that maps

p to λ. Also, we let ω : Q×
p2 → F

×

p be the smooth character such that ω(p) = 1 and
ω(u) = u ∈ F×

p2 is the reduction modulo p of u ∈ Z×
p2 .

2.1 Principal series representations and characters of G

As T is naturally isomorphic to Q×
p2 via the group homomorphism Q×

p2 → T that

maps x to t(x), all characters µλ, for λ ∈ F
×

p , and ω can (and will) also be seen as
smooth characters of T . It is then straightforward to check that any smooth character
of T is of the form µλω

r for a unique pair (r, λ) ∈ Z × F×p with 0 ≤ r ≤ p2 − 2.
By [Abd11, Théorème 5.3.1, (2)], a parabolically induced representation IndGB (χ) is
irreducible if and only if χ does not extend to a smooth character of G, so to describe
the principal series representations of G we must identify which of these characters
can be extended to smooth characters of G.

Lemma 2.3 Let (r, λ) ∈ Z × F×p with 0 ≤ r ≤ p2 − 2. The smooth character µλωr :
T → F

×

p extends to a smooth character χ : G → F
×

p if, and only if, λ = 1 and
r = m(p − 1) with 0 ≤ m ≤ p. In this case, we have χ = ω−m ◦ det.

Proof Let µλωr be a smooth character of T that extends to a smooth character χ
of G. Then χ must be trivial on the derived group Gder of G, hence it is trivial
on the diagonal torus of Gder, which means that we must have χ(x) = 1 whenever
c(x) = x, i.e. whenever x belongs to Q×p . As p belongs to Q×p , we must have
χ(t(p)) = (µλωr )(p) = 1, i.e. λ = 1.

Now let ζ be a root of unity of order p2 − 1 in Q×
p2 : then ζ lies in Z×

p2 and ω(ζ)
generates the multiplicative group F×

p2 . Since ζ p+1 belongs to Q×p , we must have
χ(t(ζ p+1)) = 1, i.e. ζr(p+1) = 1. This implies, as ζ is of order p2−1, that p−1 divides
r , hence r = m(p−1)with 0 ≤ m ≤ p. Conversely, if r satisfies such a condition, then
ωr = (ωp−1)m is the restriction of the smooth characterω−m◦det : G→ F

×

p , since for
any k we have (ωk ◦ det)(t(ζ)) = ωk(ζc(ζ)−1) = ωk(ζ ζ−p) = ωk(ζ1−p) = ζ (1−p)k .�

Corollary 2.4 Let (r, λ) ∈ Z × F×p with 0 ≤ r ≤ p2 − 2. If (r, λ) , ((p − 1)m,1) for
all 0 ≤ m ≤ p, then IndGB (µλω

r ) is an irreducible smooth representation of G.

Proof This is a direct application of [Abd11, Théorème 5.3.1, (2)] using Lemma
2.3. �
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2.2 Special series representations

Now assume that χ is a smooth character ofT that extends to a smooth characterωr ◦

det of G. Up to twisting byω−r ◦det, we can assume that χ is trivial and focus on the
parabolically induced representation IndGB (1B). We know from [Abd11, Théorème
5.3.10, (2)] that IndGB (1B) is a reducible representation of G of length 2, with the
trivial character 1G as subrepresentation. The irreducible quotient representation

StG := IndGB (1B)/1G

is called the Steinberg representation, and twists of Steinberg representations by
smooth characters ofG are called special series representations. Such representations
are exactly those that appear as irreducible quotients of IndGB (ω

k ◦det) for any integer
0 ≤ k ≤ p.

2.3 Classification of non-supercuspidal representations of G

If we combine the results of the previous subsections, we recover the following clas-
sification of non-supercuspidal representations of G, as given in [Koz16, Theorem
4.3].

Theorem 2.5 Let V be an irreducible smooth, non-supercuspidal representation of
G. Then V is isomorphic to one and only one of the following representations:

• ωk ◦ det, with 0 ≤ k ≤ p;
• (ωk ◦ det) ⊗ StG , with 0 ≤ k ≤ p;
• IndGB (µλω

r )with (r, λ) ∈ Z×F×p such that 0 ≤ r ≤ p2−2 and (r, λ) , ((p−1)m,1)
for all 0 ≤ m ≤ p.

Proof We saw above that all these representations are irreducible smooth non-
supercuspidal representations of G over Fp . We know from [Abd11, Lemme 5.4.1]
(resp. [Abd11, Lemme 5.4.3]) that principal series (resp. special series) representa-
tions coming from distinct characters are non-isomorphic. As principal series rep-
resentations and special series representations are infinite dimensional, they cannot
be isomorphic to smooth characters of G. Finally, [Abd11, Lemme 5.5.1, Corollaire
5.5.4] ensures that a principal series representation cannot be isomorphic to a special
series representations as their spaces of I(1)-invariant vectors have different dimen-
sions (as vectors spaces over Fp), where I(1) denotes the standard pro-p-Iwahori
subgroup of G. �

Remark 2.6 The classification of supercuspidal representations of G is also known,
as it was proven by Kozioł [Koz16, Theorem 5.7]. Note that it is one of the only three
cases where such a classification is explicit (see [Bre03] and [Abd14] for the two
other cases). We choose to not recall this part of the classification in this paper as it
would require a lot of extra material that we do not use at all in the sequel. For the
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record, let us nevertheless mention that one of the next steps of our research project
is to understand how supercuspidal representations deform.

3 A non-supercuspidal semisimple Langlands correspondence

Following Langlands philosophy, (packets of) isomorphism classes of irreducible
smooth representations of a reductive p-adic group should correspond to equivalence
classes of Langlands parameters, which roughly correspond to certain (packets of)
Galois representations. For our group G = U(1,1)(Qp2/Qp), this statement has been
clarified and proven by Kozioł in [Koz16, Section 6]. The goal of this section is to
explain what happens to packets of non-supercuspidal representations under such a
correspondence.

3.1 Galois representations and dual groups associated with G

To make precise the conditions put on the Galois representations that should appear
in the p-modular Langlands correspondence for G, we need to define some algebraic
groups that are naturally attached to (the algebraic group U(1,1) that defines) G in
this setting. The first one is the L-group, or Langlands group, which already appears
in the classical (complex) correspondence and is defined as follows. (Recall that ϕ
is the Frobenius automorphism fixed in Section 1.)

Definition 3.1 The L-group associated to G is defined as LG := GL2(Fp) o ΓQp ,
where the action of ΓQp on GL2(Fp) is given by the following formulae (for g ∈
GL2(Fp) and h ∈ ΓQ

p2 ):

ϕ g ϕ−1 =
( 0 1
−1 0

)
(gt )−1 ( 0 1

−1 0
)−1
= det(g)−1g , (1)

hgh−1 = g . (2)

For further use and generalisation, we note here that the group GL2(Fp) involved in
Definition 3.1 is actually the group of Fp-points of the usual dual group of U(1,1).
As the latter splits over the quadratic unramified extension Qp2 of Qp , the Fp-points
of its dual group naturally identify with the Fp-points of the dual group of the split
form, i.e. of GL2.

The second group we are interested in is the C-group, as defined in [BG13,
Definition 5.3.2] by Buzzard and Gee. As explained in the introduction of [BG13],
their initial motivation was to define an alternative to the L-group that makes it
possible to state reasonable generalisations of Clozel’s algebraicity conjectures for
groups other than GLn. Since this alternative appears in Kozioł–Morra’s work as a
convenient tool to deform certain families of Galois parameters [KM20], we need
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to understand how it relates to the classical L-group LG used by Kozioł to state
the semisimple correspondence [Koz16, Definition 6.20]. Note that defining the C-
group ofG requires us to assume p , 2, though the previouslymentioned semisimple
correspondence holds for an arbitrary prime p.

Thus assume for now that p is odd. The C-group associated to G is the L-group
of some Gm-extension of the algebraic group U(1,1) that is characterised by [BG13,
Proposition 5.3.1]. At this point in the paper, we only need the following concrete
description of its Fp-points. If we let CG denote this group, then we have (as in
[BG13, Section 8.3] or [Koz16, Appendix A]):

CG =
((

GL2(Fp) × F
×

p

)
/〈(−I2,−1)〉

)
o ΓQp '

(
GL2(Fp) × F

×

p

)
o ΓQp , (3)

where ΓQp acts trivially on theF
×

p-factors and by formulae (1) and (2) on theGL2(Fp)-
factors (on both sides of the isomorphism). Note that the latter isomorphism in (3)
is given by

(g,a) 7→
((

a 0
0 a

)
g,a2

)
. (4)

3.2 From Langlands parameters to C-parameters

We now recall classical definitions related to Langlands parameters involving the
L-group of G. Later, we will adjust our definitions to work with parameters defined
using the C-group of G, to connect more clearly to the setting developed in [KM20].
To ease notation, we let Ĝ := GL2(Fp) denote the left-hand factor in the definition
of LG.

Definition 3.2 A Langlands parameter is a group homomorphism φ : ΓQp →
LG =

GL2(Fp) o ΓQp such that the composition of φ with the canonical projection LG→
ΓQp is the identity map. We say that two Langlands parameters are equivalent if they
are conjugate by an element of Ĝ.

Let φ : ΓQp →
LG be a Langlands parameter. According to (2), ΓQ

p2 acts trivially
on Ĝ, hence the restriction of φ to ΓQ

p2 is of the form h 7→ φ0(h)h for some group
homomorphism φ0 : ΓQ

p2 → Ĝ.

Definition 3.3 Given a Langlands parameter φ, the group homomorphism φ0 :
ΓQ

p2 → GL2(Fp) defined above is a two-dimensional p-modular representation
of ΓQ

p2 called the Galois representation associated to φ.

Note that, by construction, a Langlands parameter φ is completely determined by the
image φ(ϕ) of the Frobenius element and by its Galois representation φ0. But, unlike
in the classical complex setting, the Galois representation φ0 is always reducible
[Koz16, Proposition 6.13]. This implies that its image lies in a Borel sugroup of
GL2(Fp), which is (up to conjugacy, which does not change the isomorphism class
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of φ0 as a representation of ΓQ
p2 ) the subgroup P of its upper-triangular matrices.

Equivalently, this means that φ0 is an extension of the form 1→ χ1 → ?→ χ2 → 1,
where χ1, χ2 : ΓQ

p2 → F
×

p are continuous characters. Since non-supercuspidal rep-
resentations come by definition from irreducible smooth representations of T (as
subquotients of well-chosen parabolically induced representations, see Definition
2.2), they should correspond, under the p-modular Langlands correspondence for
G, to Galois representations coming from the corresponding Levi factor of P, i.e.
to Galois representations that decompose as χ1 ⊕ χ2 for some continuous char-
acters χ1, χ2 : ΓQ

p2 → F
×

p . Letting P := ZN be the Levi decomposition of P,
with N being the unipotent radical of P, this observation translates on the level of
Langlands parameters by requiring that the corresponding Langlands parameter φ
factors through the natural ΓQp -equivariant embedding LZ ↪→ LG induced by
the canonical embedding Z ↪→ G. We will say that such Langlands parameters are
non-supercuspidal.

To give an explicit description of such parameters (as in [Koz16, Proposition
6.17]), we need to introduce the following notation. For any λ ∈ F

×

p , we let
µ2,λ : ΓQ

p2 → F
×

p be the group homomorphism that is trivial on IQ
p2 and sat-

isfies µ2,λ(ϕ
2) = λ. Now fix an element $2 ∈ Qp such that $p2−1

2 = p, and let
$1 = $

p+1
2 . For n ∈ {1,2}, we let ωn : IQp → F

×

p be the character given by

ωn(h) = (
h ·$n

$n
). According to [Bre07, Lemma 2.5], ωn can be extended to a smooth

character ωn : ΓQpn → F
×

p that maps ϕn to 1. It is easy to check [Koz16, Corollary
6.3] that smooth characters of ΓQ

p2 → F
×

p are of the form µ2,λω
r
2 for some pair

(r, λ) ∈ Z × F
×

p with 0 ≤ r ≤ p2 − 2.

Proposition 3.4 A Langlands parameter φ : ΓQp →
LG is non-supercuspidal if,

and only if, there exists a pair (r, λ) ∈ Z × F×p with 0 ≤ r ≤ p2 − 2 such that φ is
equivalent to the Langlands parameter ψr ,λ, defined by

ψr ,λ(ϕ) =

(
1 0
0 λ

)
ϕ and ψr ,λ(h) =

(
µ2,λ−1ωr

2(h) 0
0 µ2,λω

−pr
2 (h)

)
h

for any h ∈ ΓQ
p2 . Moreover, if (r, λ) ∈ Z × F×p and (r ′, λ′) ∈ Z × F×p are such that

0 ≤ r,r ′ ≤ p2 − 2, then ψr ,λ and ψr′,λ′ are equivalent Langlands parameters if, and
only if, we have (r ′, λ′) = (r, λ) or (r ′, λ′) = (−pr + m(p2 − 1), λ−1) for some m ∈ Z.

Proof The characterisation of non-supercuspidal parameters comes from [Koz16,
Proposition 6.17]. The characterisation of equivalence classes of such parameters is
done in [Koz16, Lemma 6.18]. �

Asmentioned earlier, we would like to connect these parameters toC-groups: this
is why we now define the notion of C-parameters (also called CG-valued Langlands
parameters), and explain how they relate to the (non-supercuspidal) Langlands pa-
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rameters defined above. In the next definition, we write CĜ for the left-hand factor
(GL2(Fp) × F

×

p )/〈(−I2,−1)〉 appearing in the definition of CG (see (3)).

Definition 3.5 A C-parameter is a group homomorphism φ : ΓQp →
CG such that

the composition of φ with the canonical projection CG → ΓQp is the identity map.
We say that two C-parameters are equivalent if they are conjugate by an element of
CĜ.

Under (4), we can (andwill) considerC-parameters to take values in (GL2(Fp)×F
×

p)o

ΓQp ; hence we will also use isomorphism (4) to identify CĜ with GL2(Fp) × F
×

p .
This point of view allows for a more straightforward connection with Langlands
parameters, as the latter take values in GL2(Fp) o ΓQp . Similarly to what was done
in Proposition 3.4 for Langlands parameters, we define C-parameters ψ̃r ,λ, indexed
by pairs (r, λ) ∈ Z × F×p with 0 ≤ r ≤ p2 − 2, by setting

ψ̃r ,λ(ϕ) =

((
1 0
0 λ

)
,1

)
ϕ and

ψ̃r ,λ(h) =
((
µ2,λ−1ωr

2(h) 0
0 µ2,λω

−pr−(p+1)
2 (h)

)
ω1(h),ω1(h)

)
h

for any h ∈ ΓQ
p2 .

We observe that, by construction, there is a one-to-one correspondence between
these C-parameters and non-supercuspidal Langlands parameters as given in Propo-
sition 3.4. In particular, equivalence classes of C-parameters are characterised in
the same way as equivalence classes of Langlands parameters are in the last part of
Proposition 3.4.

3.3 A Langlands correspondence for non-supercuspidal
representations

Historically, the first group for which the formulation of a (classical or p-modular)
local Langlands correspondence involves actual packets (i.e. is not a one-to-one
correspondence) is the special linear groupSL2. Thus beforewe discuss L-packets for
G in the present setting, we briefly review the logic that goes into making analogous
definitions for SL2. In the classical setting (see the introduction of [LL79]), packets
for SL2 can be seen (on the automorphic side) as an incarnation of the action of GL2
by conjugation on smooth representations ofSL2, asmost packets correspond toGL2-
orbits of irreducible representations. Each of these so-called L-packets corresponds
to an equivalence class of group homomorphisms ΓQp → PGL2(C), which in turn
can be thought of as the set of Galois representations lifting a fixed projective Galois
representation.

In the p-modular setting,we can follow the same philosophy to define a local Lang-
lands correspondence for supercuspidal representations of SL2(Qp) [Abd14, Section
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4.2]: in this case, L-packets consist of GL2(Qp)-orbits of irreducible supercuspidal
representations of SL2(Qp) over Fp , but these packets can also be defined as Jordan-
HÜolder factors of a given irreducible supercuspidal representation of GL2(Qp). Note
that, unlike in the classical case, there is no multiplicity-one result for p-modular
representations (compare [LL79, Lemma 2.6] with [Abd14, Théorème 4.12 (2)] for
r = (p − 1)/2).

The non-supercuspidal case for SL2(Qp) is even trickier than the supercuspidal
case. First note that, as twisting a representation by a character of GL2(Qp) does
not change its restriction to SL2(Qp), non-isomorphic representations of GL2(Qp)

can be isomorphic as representations of SL2(Qp). This can actually occur even for
pairs of representations that remain non-isomorphic after twisting by any character
of GL2(Qp), see [Abd14, Théorèmes 2.16 and 4.12]. Moreover, [Abd14, Proposition
2.8] shows that non-supercuspidal representations are fixed (up to isomorphism) un-
der the action ofGL2(Qp) by conjugation, which prevents us from defining L-packets
simply as GL2-orbits of irreducible smooth representations. Indeed, doing so would
imply that any natural map from irreducible representations of SL2(Qp) to the set of
equivalence classes of Langlands parameters for SL2(Qp) (i.e. of projective Galois
representations in this context) would map distinct L-packets to the same projective
representation, which does not make sense for a correspondence. This motivates the
introduction of (reducible) semisimple representations in the non-supercuspidal set-
ting [Abd14, Definition 4.13]: their factors correspond to irreducible representations
that should match with the same projective representation, and their construction
ensures that they are stable under GL2-conjugation, hence that the original concept
of an L-packet is in some way preserved. Note that [Abd14, Théorème 3.18] relates
these semisimple representations with semisimplifications of well-known smooth
representations of SL2(Qp).

Following the same philosophy, we are led to make the following definitions for
G.

Definition 3.6 Given (r, λ) ∈ Z × F×p with 0 ≤ r ≤ p2 − 2, we write π(r, λ) for the
semisimplification of IndGB (µλ−1ω−pr ).

For instance, we have, for 0 ≤ r ≤ p − 1 and λ ∈ F×p:

π(r, λ) =


IndGB (µλ−1ω−pr ) if (r, λ) , (0,1), (p − 1,1),
(ωp ◦ det) ⊕ ((ωp ◦ det) ⊗ StG) if (r, λ) = (p − 1,1),
1G ⊕ StG if (r, λ) = (0,1).

Remark 3.7 Although Definition 3.6 is uniform for all pairs (r, λ), the representation
π(0,1) actually naturally arises as the semisimplification of a non-trivial extension
of 1G by StG , not of a parabolically induced representation. Though it has no impact
in the definition of a semisimple Langlands correspondence, it must be kept in mind
for future work. For more information on this phenomenon, the reader may refer to
[Abd14, Théorèmes 3.16 and 3.18], where the corresponding objects and phenomena
for GL2 and SL2 are introduced.
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Note that assuming 0 ≤ r ≤ p − 1 is not restrictive in the context of Langlands
correspondences, since Proposition 3.4 shows that an equivalence class of Langlands
parameters (or, equivalently, of C-parameters) always contains a parameter whose
index r satisfies this condition. Also note that, similarly to what happens for SL2
and following [Koz16, Proposition 5.10], each of these representations is fixed (up
to isomorphism) under the action of

GU(1,1)(Qp2/Qp) :=
{
g ∈ GL2(Qp2 ) | g∗

(
0 1
1 0

)
g = κ

(
0 1
1 0

)
for some κ ∈ Q×p

}
.

According to Proposition 3.4, distinct pairs (r, λ) and (r ′, λ′) may correspond to
equivalent C-parameters, so we are led to define the following semisimple represen-
tations of G to obtain suitable representatives of L-packets.

Definition 3.8 For (r, λ) ∈ Z × F×p with 0 ≤ r ≤ p − 1, we define Π(r, λ) as the
following semisimple representation of G:

Π(r, λ) := π(r, λ) ⊕ (ωr+1 ◦ det) ⊗ π(p − 1 − r, λ−1) .

For any integer k, we also set Π(r, λ, k) := (ωk ◦ det) ⊗ Π(r, λ).

Note thatΠ(r, λ, k) is an L-packet for G in the sense of [Koz16, Definition 5.9], since
it is by construction fixed under the action of GU(1,1)(Qp2/Qp). We can now state
the non-supercuspidal part of the p-modular semisimple Langlands correspondence
for G [Koz16, Definition A.5].

Definition 3.9 The non-supercuspidal part of the semisimple p-modular correspon-
dence for G is the following matching between equivalence classes of C-parameters
ψ̃r′,λ′ and isomorphism classes of L-packetsΠ(r, λ, k): for any 0 ≤ r ≤ p−1, λ ∈ F×p
and 0 ≤ k < p + 1,

ψ̃(r−1)+(1−p)k ,λ ←→ Π(r, λ, k) .

4 Deforming non-supercuspidal representations of G

Our purpose is to study how the p-modular Langlands correspondence defined above
behaves when it is functorially lifted to characteristic 0, i.e. to p-adic representa-
tions/parameters. To define precisely what we mean by functorial lifting requires the
use of deformation theory. This section gathers what is known about deformations
of non-supercuspidal representations of G; its Galois counterpart, relative to the
deformation of Galois parameters, is postponed to Section 5.

From now on, we let E/Qp be a (large enough) finite extension of fields. We let
O be the ring of integers of E and k = O/$O be its residue field, where $ denotes
a fixed uniformiser of O. We write Art(O) (respectively: Noe(O); Pro(O)) for the
category of local Artinian (respectively: local complete Noetherian; local profinite)
O-algebras A such that the structural morphism from O to A is local and induces
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an isomorphism between k and the residue field of A; the morphisms are local
O-algebra morphisms (respectively: local O-algebra morphisms; continuous local
O-algebra morphisms). Note that Art(O) is the full subcategory of Artinian rings (in
Pro(O) and) in Noe(O) and that Noe(O) is the full subcategory of Noetherian rings
in Pro(O).

We write H for the Qp-points of a connected reductive group defined over Qp .
(In the sequel, H will mainly be either G or T , as defined above.)

Definition 4.1 Let π be a representation of H over k. A lift of π to A ∈ Art(O) is a
pair (π, φ) where π is a smooth A[H]-module that is free over A, and φ : π → π is
an A[H]-linear surjection that induces an A[H]-linear isomorphism

π ⊗A k → π .

A morphism of lifts (π, φ) → (π′, φ′) is an A[H]-linear morphism i : π → π′ such
that φ = φ′ ◦ i.

For any A ∈ Art(O), we let Defπ(A) be the set of isomorphism classes of lifts of π
to A. Then any smooth k-representation π of H defines a functor

Defπ : Art(O) → Set .

Considering the strong connection between non-supercuspidal representations and
parabolic induction functors, it seems natural to wonder howmuch these deformation
functors are compatible with the parabolic induction functor IndGB : Mod∞T →
Mod∞G . In a series of two papers [HSS18, HSS19], Hauseux–Schmidt–Sorensen
addressed this question: we now recall the results we need from these papers.

4.1 Deforming parabolically induced representations

Let χ : T → k× be a smooth character and let χ be a lift of χ to A ∈ Art(O).
By [HSS18, Lemma 2.1], the parabolically induced representation IndGB χ is a free
A-module, and the natural surjection A→ k induces a k[G]-linear isomorphism

(IndGB χ) ⊗A k ' IndGB χ.

In other words, IndGB χ is a lift of IndGB χ over A. Furthermore, any morphism
of lifts (χ1, φ1) → (χ2, φ2) of χ over the same ring A induces a morphism
(IndGB χ1, IndGB (φ1)) → (IndGB χ2, IndGB (φ2)) of lifts of IndGB (χ) over A. In [HSS18,
Section 2.5], Hauseux–Schmidt–Sorensen show that we actually have a morphism
of functors

IndGB : Defχ → DefIndGB χ .

They also give sufficient conditions for this morphism to be an isomorphism, which
lead to the following statement for the group G.
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Theorem 4.2 Let χ = µλωr be a smooth k-character of T . Assume that λ , ±1 or
that r − 1 is not divisible by p − 1. Then

IndGB : Defχ → DefIndGB χ

is an isomorphism.

Note that this statement requires us to assume that E/Qp is large enough, to ensure
that χ actually takes values in the finite field k, and not only in k.

Proof Let ∆ = {α} be the set of positive roots for G with respect to (B−,T), and
write sα for the corresponding reflection in the Weyl group. Following [HSS18,
Corollary 4.18] for F = Qp , it suffices to check that

χ , χα ⊗ (ω−1 ◦ α). (5)

Since χα(x) = χ(c(x)−1) for all x ∈ Qp2 , checking (5) is equivalent to find some
x ∈ Qp2 such that

χ(xc(x)) , (ω−1 ◦ α)(x), i.e. such that χ(N(x)) , (ω−1 ◦ α)(x) ,

where N : Qp2 → Qp denotes the norm map. We now want to explicitly describe α.
To do this, let us recall that we fixed an element ε ∈ Qp2 such that {1, ε} is a basis
for Qp2 over Qp and c(ε) = −ε. If g denotes the Lie algebra of G, then a basis for
the Lie algebra of G over Qp is given by{(

1 0
0 −1

)
,

(
ε 0
0 ε

)
,

(
0 ε
0 0

)
,

(
0 0
ε 0

)}
.

As any element t(x) =
(
x 0
0 c(x)−1

)
ofT acts on

( 0 0
ε 0

)
as multiplication by x−1c(x)−1 =

N(x)−1, we see that α is given by the inverse of the norm map, hence checking
condition (5) now boils down to finding some x ∈ N(Q×

p2 ) such that χ(x) , ω(x).
But we have, for any u ∈ Z×p and any integer n,

χ(up2n) = λ2nur .

If λ , ±1, then χ(p2) , ω(p2). If r−1 is not divisible by p−1, then there exists some
unit u ∈ Z×p such that ω(u) , χ(u). As N(Q×

p2 ) = 〈p
2〉 × Z×p , the result follows. �

Further note that under the assumptions of Theorem 4.2, the deformations of χ
(hence of IndGB (χ)) are well-understood: according to [HSS18, Proposition 4.17],
DefIndGB (χ)

(A) is in natural bijection with HomPro(O)(Λ, A) for any A ∈ Art(O), the
converse map being given by ψ 7→ IndGB (ψ ◦ χ

univ), and this bijection is functorial
in A ∈ Art(O). In this statement, Λ denotes the Iwasawa algebra associated to the
torus T (see [Sch11, Section 19.7] for a precise definition) and χuniv : T → Λ is the
so-called universal deformation of χ (see [HSS18, Proposition 4.17] for the explicit
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formula defining χuniv). To completely understand deformations of parabolically
induced representations, we now have to answer the following open question.

•? Question 1

What are the deformations of IndGB (µλω
r ) when λ = ±1, or when p − 1 divides

r − 1?

Note that a direct comparison with Corollary 2.4 shows that the major part of the
representations covered by this question are irreducible representations of G, hence
of greatest interest in the Langlands program.

4.2 Deformations of special series representations

Given A ∈ Art(O) and a smooth character σ : T → A× that extends to a smooth
character of G, we can proceed as in the p-modular setting (see [Abd11, Section
5.3.2]) to show that σ is a subrepresentation of IndGB (σ). We can hence define the
Steinberg representation as the quotient representation

StGB (σ) := IndGB (σ)/σ.

Note that, if A = k and σ is a smooth k-character of T that extends to a smooth
k-character of G, then StGB (σ) ' StG ⊗ σ, where StG denotes the Steinberg repre-
sentation we defined in Section 2.2. Following [HSS19, Section 9], we obtain, for
any smooth character χ : G→ k×, a natural transformation

StGB : Defχ → DefStG ⊗χ . (6)

Theorem 4.3 The natural transformation (6) is an isomorphism of functors.

Proof This is a straightforward application of [HSS19, Proposition 10], as one-
dimensional representations are obviously admissible. �

In other words, understanding deformations of representations in the special series
amounts to understanding deformations of smooth k-characters of G, and the latter
are once again well-understood by [HSS18, Proposition 4.17]. Following [HSS19,
Corollary 15], and using the same notation as in Section 4.1, we obtain a similar
statement to the one we get for parabolically induced representations: for any smooth
character χ : G → k× and any A ∈ Noeth(O), we have a natural bijection between
DefStG ⊗χ(A) and HomPro(O)(Λ, A), whose converse map is given by ψ 7→ StGB (ψ ◦
χuniv), and this bijection is moreover functorial in A ∈ Art(O).
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5 Deforming Galois parameters

In this section, we summarise what is known about deformations of the parameters
defined in Section 3.2 and explain what questions we aim to solve. One can view this
section as the Galois counterpart of Section 4 with the difference that, as mentioned
in the introduction, a priori wemake no specific assumption on the Galois parameters
here (while Section 4 only holds for non-supercuspidal representations). We follow
[KM20] for most of the section.

We start by introducing C-parameters in characteristic zero as well as the notion
of an inertial type. We also introduce genericity for C-parameters as we will need
to impose some genericity conditions on the Galois parameters we want to deform.
We recall some notions from deformation theory, specialised to our setting. We then
show how one transfers fromC-parameters to genuine p-adic Galois representations.
It turns out that we can study the deformations of these representations by relating
them to Kisin modules. We end with demonstrating to what extent we can determine
the deformations of our Galois parameters explicitly using Kisin modules.

We keep the same notation as above and we furthermore fix an embedding σ0 :
Qp2 ↪→ E , as well as a (p2−1)th root π of −p in E (which exists as E/Qp is assumed
to be large enough). We let L = Qp2 (π) and write ω̃π : Gal(L/Qp2 ) → Z×

p2 for the

character given by ω̃π(g) = g(π)
π . We also set ω̃2 := σ0 ◦ ω̃π : Gal(L/Qp2 ) → O×.

Note that ω̃π and ω̃2 do not depend on the choice of π.

5.1 Definition of C-parameters in characteristic zero

To define a suitable notion of C-parameters in characteristic 0, we first have to
define the C-group in characteristic 0, which is actually straightforward. Indeed, as
mentioned in Section 3.1, the group CG arises as the Fp-points of a certain algebraic
group, which we will call CG. Thus we may extend our definition to define CG(R)
for any topological Zp-algebra R as follows (see [KM20, Section 2.3] for further
details):

CĜ(R) :=
(
GL2(R) × R×

)
/〈(−I2,−1)〉 and CG(R) := CĜ(R) o ΓQp ,

where ΓQp still acts via formulae (1) and (2). Note that we will continue to write
CĜ (respectively CG) instead of CĜ(Fp) (respectively CG(Fp)). Also note that the
isomorphism (4) still holds in this setting, so we can (and will) identify CĜ(R) with
GL2(R) × R× and CG(R) with (GL2(R) × R×) o ΓQp . The topology on CG(R) is
the one inherited from R when CĜ is considered as algebraic group. Note that this
topology coincides with the usual topology on (GL2(R) × R×) /〈(−I2,−1)〉oΓQp for
the rings considered in the remainder of the paper. We can now define (equivalence
classes of) parameters as follows, where R denotes a topological Zp-algebra.
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Definition 5.1 An (R-valued) C-parameter is a continous homomorphism ρ :
ΓQp →

CG(R) such that the composition of ρ with the canonical projection
CG(R) → ΓQp is the identity map. We say that two C-parameters are equivalent if
they are conjugate by an element of CĜ(R).

Note that formula (2) ensures that this definition is equivalent to the one given
in [KM20, Definition 4.1]. We also note that there are similar definitions for the
R-points of the L-group as well as R-valued L-parameters, and that the R-valued
analogue of the isomorphism (4) establishes a natural connection between R-valued
Langlands parameters and R-valued C-parameters.

Remark 5.2 As in the p-modular setting (see Definition 3.3), and following [KM20,
Section 5.3.2], there is a natural bijection between C-parameters in characteristic 0
and genuine Galois representations enriched with extra data. This bijection will be
made explicit in Section 5.4.1.

5.2 Inertial types and generic C-parameters

We now characterise the C-parameters that will be the focus of the remainder of the
paper. A common way to have some control on Galois objects consists in putting
some conditions on their restrictions to the inertia subgroup, and we will proceed
in this way to define a suitable notion of genericity, inspired by similar notions for
genuine representations of absolute Galois groups. We thus introduce the notion of
an inertial type, which appears in different useful settings that will be described in
this subsection.

5.2.1 Genericity for classical inertial types

We start by recalling the definition of an inertial type. This definition serves as a
guide when defining the suitable objects in our setting, and furthermore, we will
define constraints on our deformation problems in terms of these objects.

Definition 5.3 An inertial type is a group homomorphism τ : IQ
p2 → GL2(O) that

has open kernel and extends to a representation of the full Weil group WQ
p2 .

Many useful examples of inertial types come from restrictions to IQ
p2 of represen-

tations of the full Galois group ΓQ
p2 . In particular, we consider the following family

of inertial types, which we will see are essentially the only parameters necessary for
studying non-supercuspidal parameters.

Definition 5.4 Given any pair (a, b) of integers, we write τa,b : IQ
p2 → GL2(O) for

the inertial type given by ω̃a
2 ⊕ ω̃

b
2 . When a . b mod p2 − 1, we say that τa,b is a

principal series inertial type.
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Note that these inertial types are (by construction) tamely ramified, which means
that they are trivial on the wild inertia subgroup. Moreover, if τ : IQ

p2 → GL2(O)

is an inertial type whose kernel contains IL , hence that factors through IQ
p2 /IL '

Gal(L/Qp2 ), then there exists a pair of integers (a, b) such that τ ' τa,b . (Recall that
L = Qp2 (π), as defined at the beginning of the section.)

Remark 5.5 One should be careful with the terminology of “principal series", as it
is not as transparent as it may seem at first. In the classical setting of complex repre-
sentations, any object on the Galois side labelled as “principal series" should indeed
be related to non-supercuspidal representations (see for instance [BM02, Section
A.1.2]). In the current setting, one might expect that principal series inertial types
would only be involved in non-trivial deformations of non-supercuspidal parameters,
but such an expectation already fails for GL2. Indeed, [BM02, Proposition 6.1.2(iii)]
gives instances of irreducible p-modular representations of ΓQp that correspond to
supercuspidal representations via the p-modular local Langlands correspondence
for GL2(Qp) and that admit non-zero deformations indexed by a (generic) principal
series inertial type.

We can define a genericity criterion for these inertial types. As ω̃2 is of order
p2−1, we can assume that −a and −b are non-negative integers both less than p2−1.
Their respective p-basis expansions are hence of the following form: −a = a0 + pa1
and −b = b0 + pb1 with 0 ≤ a0,a1, b0, b1 ≤ p − 1. For further use, it is convenient
to set a := (a0,a1) and b := (b0, b1).

Definition 5.6 Let τa,b be a principal series inertial type, with a and b chosen as
above, and let n be a positive integer. We say that τa,b is n-generic if :

∀ i ∈ {0,1}, n < |ai − bi | < p − n . (7)

When condition (7) is satisfied, we will also say that the pairs (−a,−b) and (a,b) are
n-generic.

5.2.2 Genericity for C Ĝ-valued inertial types

The next step towardsC-parameters consists in definingCĜ-valued inertial types, and
what genericity means for them, in a way that is compatible way with the definitions
of Section 5.2.1. For any topological Zp-algebra R, [KM20, Definition 4.1] defines
R-valued inertial types using the L-group. Since GL2(R) acts by conjugation on
such parameters, we can consider them up to equivalence and use the bijection of
[GHS18, Lemma 9.4.5] to come back to CG(R)-valued homomorphisms. We hence
get the following definition of CG(R)-valued inertial types.

Definition 5.7 Let R be a topological Zp-algebra. A CĜ(R)-valued inertial type is
a continuous group homomorphism IQp →

CĜ(R) that extends to an R-valued C-
parameter ΓQp →

CG(R). Two CĜ(R)-valued inertial types τ1 and τ2 are said to be
equivalent, written τ1 ' τ2, if they are conjugate by an element of CĜ(R).
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Following [KM20, Definition 4.1.4] for f = 1, we now introduce a family of inertial
types that is the analogue, in this setting, of the previously defined family of principal
series inertial types. In particular, it will be used to define a convenient notion
of genericity for C-parameters, and we will see later (in Lemma 5.12) that all
representations of IQp coming (via the Langlands correspondence of [Koz16]) from
generic non-supercuspidal representations of G can actually be described as such
CĜ-valued inertial types.

Definition 5.8 Given a pair of integers (a, b) and w ∈ W , where W is the Weyl group
of G, we define τw(a, b) : IQp →

CĜ as follows. If w = 1, then we set:

∀ h ∈ IQp , τ1(a, b)(h) =
((
ω2(h)a+1+p(1−b) 0

0 ω2(h)b−pa

)
,ω1(h)

)
. (8)

If w = s0, then we set:

∀ h ∈ IQp , τs0 (a, b)(h) =
((
ω2(h)a+1−pa 0

0 ω2(h)b+p(1−b)

)
,ω1(h)

)
. (9)

We can now define genericity for CĜ-valued inertial types as follows.

Definition 5.9 Let n be a positive integer. A CĜ-valued inertial type τ : IQp →
CĜ

is called n-generic if there exists a triple (w,a, b) ∈ W × Z2 such that τ ' τw(a, b)
and n < a − b + 1 < p − n.

Remark 5.10 The pair of integers (a, b) introduced here appear because they give a
way to parameterise the characters of a split maximal torus of GL2. The notion of
n-genericity in [KM20] is given in terms of the n-depth of a such a character, as
defined in [KM20, Definition 3.2], and a direct calculation shows that this notion is
equivalent to Definition 5.9. For more details on these constructions, the reader is
invited to read [KM20, Sections 2.2.3 and 4.1.4].

5.2.3 Genericity for C-parameters and their inertial types

We now use Definition 5.9 to define what it means for a p-modular C-parameter to
be n-generic. First we must set up some additional notation. Let ρ : ΓQp →

CG be a
C-parameter. Then by the same logic as in Section 3.2, the restriction ρ|IQp is of the
form ρ(h) = (ρ0(h), h), where ρ0 is a CĜ-valued inertial type. By abuse of notation
we write ρ0 as ρ|IQp .

Definition 5.11 Let n be a nonnegative integer. A C-parameter ρ : ΓQp →
CG is

n-generic if there exists an element w ∈ W and a pair of integers (a, b) such that
n < a − b + 1 < p − n and ρ|IQp ' τw(a, b).

Note that n-genericity is determined solely by the restriction of parameters to
the inertia subgroup IQp . The next lemma tells us that n-generic non-supercuspidal
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Langlands parameters (as described in Section 3.2) must correspond to trivial Weyl
parameter.

Lemma 5.12 Let (r, λ) ∈ Z × F×p with 0 ≤ r ≤ p2 − 2 and n ≥ 0. If the non-
supercuspidal C-parameter ψr ,λ : ΓQp →

CG is n-generic, then there exists a pair
(a, b) ∈ Z2 such that n < a − b + 1 < p − n and

ψr ,λ |IQp ' τ1(a, b) .

Proof By construction, we know that for any h ∈ IQp , we have

ψr ,λ |IQp (h) =
((
ω2(h)p+1+r 0

0 ω2(h)−pr

)
,ω1(h)

)
. (10)

Assume that ψr ,λ is n-generic, which means that there exists a pair (a, b) of integers
and an element w ∈ W such that ψr ,λ |IQp ' τw(a, b) with n < a − b + 1 < p − n. As
W = 〈s0〉 ' Z/2Z, we only have to prove that w, s0. We do this by contradiction,
and assume that w = s0. Comparing (9) to (10) shows that we must then satisfy one
of the two following cases.

Case 1: We have ωp+1+r
2 = ω

a+1−pa
2 and ω−pr2 = ω

b+p(1−b)
2 , which implies that

we must have

p + r ≡ a(1 − p) mod p2 − 1 and
−pr ≡ b(1 − p) + p mod p2 − 1.

The first congruence gives that r ≡ a(1− p)− p mod p2−1. Plugging into the second
congruence then shows that we must have p2(a+ 1) − pa ≡ b+ p(1− b) mod p2 − 1,
which can be rewritten as a − pa + 1 ≡ b + p − pb mod p2 − 1, i.e. as

a − b + 1 ≡ p(a − b + 1) mod p2 − 1 .

The latter congruences implies that p2 −1 divides (p−1)(a− b+1), hence that p+1
divides a− b+ 1. Write a− b+ 1 = m(p+ 1) with m ∈ Z. The n-genericity condition
then implies that n < m(p + 1) < p − n. Having 0 ≤ n < m(p + 1) shows that m is
positive, hence m(p+ 1) is at least p+ 1 > p ≥ p− n, which contradicts the fact that
m(p + 1) < p − n. Case 1 hence cannot occur.

Case 2: We have ω−pr2 = ω
a+1−pa
2 and ωp+1+r

2 = ω
b+p(1−b)
2 . Then a calculation

similar to those in Case 1 show that a+ pb+1 is divisible by p+1, hence a− b+1 =
a + pb + 1 − (p + 1)b must also be divisible by p + 1, but we proved above that this
cannot occur.

As neither of these cases can occur, w cannot be equal to s0 and the lemma is
proven. �

Remark 5.13 Note that the non-trivial Weyl element s0 does not appear as param-
eter when considering n-generic non-supercuspidal C-parameters. Due to [Koz16,
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Corollary 6.16], we suspect that types indexed by s0 may be related to n-generic
supercuspidal parameters, but this is work in progress.

Now assume that B is a finite local E-algebra and ρ : ΓQp →
CG(B) is an B-valued

C-parameter. Following [BG19, Section 3.2], we can define its inertial type using
the associated Weil–Deligne representation WD(ρ).

Definition 5.14 Let τ : IQ
p2 → GL2(O) be an inertial type and ρ : ΓQp →

CG(B)
be a C-parameter. We say that ρ has inertial type τ if WD(ρ)|IQ

p2
' τ ⊕ 1IQ

p2
,

where 1IQ
p2

denotes the trivial character of IQ
p2 .

Under some mild conditions, we can find the inertial type of ρ by looking at
the so-called base change of ρ, which is a linear representation of ΓQ

p2 defined as
follows.

Definition 5.15 Let R be a topological Zp-algebra R, and let ρ : ΓQp →
CG(R) be

a C-parameter. Write the restriction of ρ to ΓQ
p2 as

ρ|ΓQ
p2
= ρ2 ⊕ ρ1 with ρ2 : ΓQ

p2 → GL2(R) and ρ1 : ΓQ
p2 → R× .

We then say that ρ2 is the base change of ρ, and we write BC(ρ) := ρ2. We also
define the multiplier of ρ as the composite character

ΓQp

ρ
−→ CG(R)

ι̂
−→ R× .

where ι̂ is as defined in [KM20, Section 2.3.3].
Note that ρ1 is basically the restriction to ΓQ

p2 of the multiplier of ρ. In particular,
we say that ρ has cyclotomicmultiplier if ρ1 is the (reductionmod p of the) cyclotomic
character ΓQp → Z

×
p .

The notions of base change and of inertial type interact in the following proposi-
tion, which follows from [KM20, Section 5.3.3].

Proposition 5.16 Let ρ : ΓQp →
CG(B) be a C-parameter with cyclotomic multi-

plier and let τ : IQ
p2 → GL2(O) be a principal series inertial type. Then ρ has

inertial type τ if, and only if, we have WD(BC(ρ))|IQ
p2
' τ.

We thus have several notions of genericity appearing in the context of C-
parameters, so we wonder to which extent they are compatible. In particular, we
are interested in how compatible n-genericity is with reduction modulo p, or with
deformation theory as defined in Section 5.3 below. In particular, we hence aim to
solve the following question.

•? Question 2

Given a B-valued C-parameter ρ : ΓQp →
CG(B) with principal series inertial type

τ, let ρ̄ : ΓQp →
CG be its reduction modulo p. Is n-genericity for ρ (i.e. for τ, in the
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sense of Definition 5.6) equivalent to n-genericity for ρ̄ (in the sense of Definition
5.11)?

5.3 Deforming Galois parameters

As we did for p-modular automorphic representations in Section 4, we now want
to deform p-modular C-parameters. We will do so in the framework of deformation
theory as first introduced by Mazur in this setting [Maz89], then later developed
by many authors. We start by recalling some basic facts and definitions. We then
specialise to specific deformations that are not only more convenient to handle, since
they can be quite well-understood via some (advanced and technical) semi-linear
algebra that will be introduced in the next subsections, but also do carry some inter-
esting geometric and arithmetic information related to Langlands correspondences.
In particular, we will introduce the notion of a Hodge–Tate type, which relates to the
classical notion of Hodge–Tate weights, and make more assumptions on the inertial
types we will use.

Though it may not be obvious at first sight, these notions and assumptions we
make on the Galois side have a natural counterpart on the automorphic side, as can
be seen in the model case of GL2. In this setting, a first automorphic interpretation of
these data is given by the Breuil–Mézard conjecture [BM02, Conjecture 1.1]. This
conjecture has the following motivation: starting from a continuous p-modular two-
dimensional representation ρ̄ of ΓQp , one wants to understand the deformations of ρ̄
with prescribed inertial type τ andHodge–Tate weights (0, k−1). The Breuil–Mézard
conjecture predicts that the ring parametrising these deformations can be (at least
partially) understood through the study of the semisimplification of the representation
σ(τ) ⊗ Symk−2((Qp)

2) of GL2(Zp), where σ(τ) is uniquely determined by τ via the
local Langlands correspondence for GL2(Qp) [BM02, Section A.1.5].

Another automorphic interpretation, related to the previous one, explicitly appears
in the origin of the p-adic Langlands program. Indeed, one of the core statement of
this program is [Bre12, Théorème 5.1], where one sees that the connection between
the smooth and algebraic representations attached to a given (potentially semi-stable)
Galois representation ρp can only be made via an automorphic interpretation of its
Hodge–Tate weights, again with the representation Symk−2((Qp)

2) that showed up
earlier (and is usually called a Serre weight in this context).

5.3.1 Universal framed deformations

Recall that Noe(O) is the category of complete Noetherian local O-algebras with
residue field k. For any A in Noe(O), we write φA : A → k for the reduction
map. Let Γ be a profinite group, and let ρ̄ : Γ → CG(k) be a continuous group
homomorphism.
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Definition 5.17 The functor of framed deformations of ρ̄ is the functor D�ρ̄ that
associates to each A inNoe(O) the set of continuous representations ρA : Γ→ CG(A)
such that the composition

Γ
ρA
−→ CG(A)

φA
−→ CG(k)

is equal to ρ̄. We say that D�ρ̄ (A) is the set of framed deformations of ρ̄ to A.

Unless we add extra assumptions on Γ and/or on ρ̄, there is a priori no reason ensuring
that the functor D�ρ̄ is representable. In our work, we only consider the case where
Γ is the absolute Galois group ΓF with F being either Qp or Qp2 . In this setting, we
have the following nice result, which directly follows from [Bal12, Theorem 1.2.2].

Theorem 5.18 LetF be a finite extension ofQp and ρ̄ : ΓF → CG(k) be a continuous
representation. Then the framed deformation functor D�ρ̄ is representable by an object
R�ρ̄ of Noe(O).

Langlands parameters that naturally appear in the Langlands program (for in-
stance, arising in the cohomology of Shimura varieties or coming from automorphic
forms) satisfy additional properties, typically being potentially semi-stable or crys-
talline.Wewill then focus on deformations of a fixedC-parameter modulo pwith this
kind of additional conditions. They are described by some quotients of the universal
ring R�ρ̄ that will be introduced in Section 5.3.3. Note that the geometry of these
quotients is the subject of the Breuil–Mézard conjecture mentioned above; they also
play an important role in global modularity results and are related with Serre weights
conjectures.

5.3.2 Intermission: Frobenius-twist self-dual inertial types

Recall that we have fixed a geometric Frobenius ϕ (see Section 1). Note that our
definition implies that ϕ−1 is an arithmetic Frobenius.

Definition 5.19 Given a principal series inertial type τ of the form η1 ⊕ η2, we call
τ∨ := η−1

1 ⊕ η
−1
2 the dual type of τ and σ∗τ := ηp

−1

1 ⊕ η
p−1

2 the Frobenius-twist of τ.
When σ∗τ ' τ∨, we say that τ is Frobenius-twist self-dual.

Principal series inertial types that are Frobenius-twist self-dual can be described
explicitly. Indeed, if τ = ω̃a

2 ⊕ ω̃
b
2 , then τ

∨ = ω̃−a2 ⊕ ω̃
−b
2 and σ∗τ = ω̃p−1a

2 ⊕ ω̃
p−1b
2 .

A direct calculation shows that such a type τ is Frobenius-twist self-dual if, and only
if, there exists integers a, b such that τ is either of the form ω̃

(1−p)a
2 ⊕ ω̃

(1−p)b
2 or

of the form ω̃a
2 ⊕ ω̃

−pa
2 . Note that, according to [KM20, Section 4.4], this is also

equivalent to asking that τ is given by the restriction to IQ
p2 of the base change of

an O-valued C-parameter ρ : ΓQp →
CG(O) with trivial multiplier.
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5.3.3 Potentially crystalline deformations with prescribed Hodge type and
inertial type

In this subsection, we let F denote either Qp or Qp2 and we let B be any finite local
E-algebra. We first transfer to C-parameters the classical conditions imposed to gen-
uine Galois representations arising in Langlands program, namely being potentially
crystalline and of Hodge type (1,0,1). For a review of these notions in the classical
setting, the reader is invited to read for instance [Col13].

Definition 5.20 AC-parameter ΓF → CG(B) is potentially crystalline if, and only if,
its composition with any faithful algebraic representation CG ↪−→ GLn is potentially
crystalline in the classical sense of [Fon94, 5.1.4].

Definition 5.21 Assume that ρ : ΓF → CG(B) is a C-parameter with cyclotomic
multiplier. We say that ρ has p-adic Hodge type (1,0,1) when its base change BC(ρ)
has p-adic Hodge type (1,0), which means that BC(ρ) has Hodge-Tate weights
{−1,0}.

Given a principal series inertial type τ : IQ
p2 → GL2(O) that is Frobenius-

twist self-dual (in the sense of Definition 5.19), we are interested in lifts of ρ̄ that are
potentially crystalline with p-adic Hodge type (1,0,1), inertial type τ and cyclotomic
multiplier. They are parameterised by a quotient of the universal framed deformation
ring R�ρ̄ . The existence and properties of this quotient have been established in our
case in [BG19, Sections 3.2 and 3.3] (see also the proof of [Bal12, Proposition
3.0.12] and [KM20, Section 5.3.2]). In the following theorem, ρu is the universal
C-parameter from ΓQp to CG(R�ρ̄ ) lifting ρ̄.

Theorem 5.22 Let τ : IQ
p2 → GL2(O) be a principal series inertial type that is

Frobenius-twist self-dual. Then there exists a unique quotient Rτρ̄ of R�ρ̄ satisfying
the following property: for any finite local E-algebra B, and any morphism x from
R�ρ̄ to B, x factors through Rτρ̄ if and only if the C-parameter x ◦ ρu from ΓQp to
CG(B) is potentially crystalline with p-adic Hodge type (1,0,1), inertial type τ and
cyclotomic multiplier.

5.4 From C-parameters to Kisin modules

Using p-adic Hodge theory, the potentially crystalline lifts we described in the
previous section can be described by objects of semi-linear algebra, which are
easier to handle. First, we will explain in Section 5.4.1 how we have, on the one
hand, a natural bridge between C-parameters and genuine two-dimensional Galois
representations enriched with extra structures. Doing so, we will give an explicit
statement for the bijection announced in Remark 5.2. Then, we will explain how
to relate (most of) these Galois representations to a category of modules (called
Kisin modules) over an appropriate power series ring, which motivates why we get
interested in deformations of such modules in the next subsection of this paper.
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5.4.1 From C-parameters to genuine p-adic Galois representations

Let R be a topologicalZp-algebra. The notion of base change introduced inDefinition
5.15 is a first step to connect R-valued C-parameters to two-dimensional R-linear
Galois representations, but it is clearly not enough as non-equivalent C-parameters
could have isomorphic base changes. Going further hence requires extra structures
given by the notion of polarisation, which we define now.

Definition 5.23 Let ρ̃ : ΓQ
p2 → GL2(R) be a continuous group homomorphism and

θ : ΓQp → R× be a continuous character. A polarisation of ρ̃ compatible with θ is
an isomorphism α : ρ̃ϕ−1 ∼

→ ρ̃∨ ⊗ θ that is such that the composite map

ρ̃
v 7→ρ̃(ϕ−2)v
−−−−−−−−−→ ρ̃ϕ

−2 αϕ−1

−−−−→
(
ρ̃∨ ⊗ θ

)ϕ−1 can
−−→

((
ρ̃ ⊗ θ−1

)ϕ−1 )∨ (
(α⊗θ−1)

∨
)−1

−−−−−−−−−−−→ ρ̃

is the multiplication by −θ(ϕ−1) map.

Considering triples (ρ̃, θ, α) as in Definition 5.23 is now enough to distinguish be-
tween non-equivalent C-parameters, as stated by the next theorem.

Theorem 5.24 Let ρ : ΓQp →
CG(R) be a C-parameter with multiplier ρ1.

1. Let A be the GL2(R)-component of ρ(ϕ−1) and let α be the R-endomorphism of
R2 defined by α(v) :=

( 0 −1
1 0

)
A−1v. Then α is a polarisation of BC(ρ) compatible

with ρ1.
2. The previous construction induces a bijection ρ 7→ (BC(ρ), ρ1, α) from R-valued

C-parameters to triples (ρ̃, θ, α) where ρ̃ denotes a continuous morphism from
ΓQ

p2 to GL2(R), θ a continuous R-character of ΓQp and α a polarisation of ρ̃
compatible with θ.

Proof This is [CHT08, Lemma 2.1.1] rephrased in the language of [KM20, Section
5.3.2]. �

From now on, we fix θ to be the cyclotomic character. This implies in particular
that the bijection of Theorem 5.24 actually stands between C-parameters ρ : ΓQp →
CG(R) with cyclotomic multiplier and pairs (ρ̃, α) where ρ̃ : ΓQ

p2 → GL2(R) is a
continuous representation of ΓQ

p2 and α is a polarisation of ρ̃ compatible with the
cyclotomic character (note that in that case −ε(ϕ−1) = −1).

5.4.2 Kisin modules with prescribed descent data and height

Thanks to Theorem 5.24, we are reduced to understand genuine Galois represen-
tations endowed with some extra structure. To do this, we introduce a category of
modules over a power series ring, called Kisin modules, which allow to translate
arithmetic and geometric properties into semi-linear algebra. These modules come
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with decorations that reflect the extra data that appeared on our Galois representa-
tions, and with a natural functor from Kisin modules to Galois representations that
preserves these decorations but is not, in general, an equivalence of categories (see
Section 5.4.3). Though the construction of decorated Kisinmodules is a bit technical,
it is really useful since these modules and their deformations are much more handy
to compute than the Galois representations they parametrise.

From now on, we let R denote a complete local Noetherian O-algebra with
residue field k and we setSR :=

(
Zp2 ⊗Zp R

)
[[u]]. The ringSR is equipped with a

Frobenius endomorphism ϕ that is trivial on R, sends u to up , and is the arithmetic
Frobenius on Zp2 (i.e. satisfies ϕ = ϕ−1 on Zp2 ).

Definition 5.25 A Kisin module over R with height in [0,1] is a pair (M, φM), where
M is a finitely generated projectiveSR-module, and φM : ϕ∗M :=SR⊗SR ,ϕM → M

is anSR-linear map, that satisfies

(up2−1 + p)M ⊆ φM
(
ϕ∗M

)
⊆ M . (11)

We let Y [0,1](R) be the category of Kisin modules over R with height in [0,1].
Given an object (M, φM) in Y [0,1](R) and an integer i in {0,1}, we defineM(i) as the
R[[u]]-submodule of M on which Zp2 acts through the embedding σ0 ◦ ϕ

i , where
σ0 still denotes the embedding of Qp2 into E we fixed initially:

M
(i) =

{
m ∈ M | ∀x ∈ Zp2, (x ⊗ 1R)m = (1Z

p2 ⊗

(
σ0 ◦ ϕ

i)(x)
)

m
}
. (12)

Note that, as an R[[u]]-module,M decomposes as a direct sumM(0) ⊕M(1).
Recall that π is a fixed (p2 − 1)-th root of −p in E and that we set L = Qp2 (π).

Given g inGal(L/Qp2 ), we define ĝ as theZp2 ⊗Zp R-linear automorphism ofSR that
sends u to (ω̃π(g) ⊗ 1R) u. Note that we have, for all g, h in Gal(L/Qp2 ): ĝh = ĝ ◦ ĥ
and ϕ ◦ ĝ = ĝ ◦ ϕ. Further note that for any i ∈ {0,1}, bothM(i) and uM(i) are stable
under the action of Gal(L/Qp2 ) on M, which ensures that the following definition
makes sense.

Definition 5.26 Let (M, φM) be an object of Y [0,1](R) such thatM is of rank 2 as an
SR-module, and let τ be a principal series inertial type. A descent data of type τ
on M is a collection of Zp2 ⊗Zp R-linear automorphisms (ǧ)g∈Gal(L/Q

p2 ) of M that
satisfies the following conditions:

1. for any g in Gal(L/Qp2 ), ǧ is ĝ-semilinear;
2. for all g and h in Gal(L/Qp2 ), one has ǧh = ǧ ◦ ȟ;
3. for any g in Gal(L/Qp2 ), ǧ ◦ φM = φM ◦ ϕ∗ǧ;
4. for any i in {0,1}, the R[Gal(L/Qp2 )]-moduleM(i)/uM(i) is isomorphic to τ⊗O R.

We let Y [0,1],τ(R) be the full subcategory of Y [0,1](R) whose objects are rank
2 modules having descent data of type τ. Finally, we define a full subcategory of
Y [0,1],τ(R) that is the category of Kisin modules we are really interested in.
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Definition 5.27 We let Yτ(R) be the full subcategory of Y [0,1],τ(R) whose objects
are Kisin modules whose determinant satisfy the following chain of inclusions:(

up2−1 + p
)

detM = φM
(
ϕ∗(detM)

)
.

Note that this is the category denoted by Yµ,τ(R) in [KM20, Definition 5.4].
Below we give explicit examples of Kisin modules in Yτ(R) (see Sections 5.5.1

and 5.5.2). Note that full classification results for the objects of Yτ(R) are actually
available: see Proposition 5.37, Definition 5.40 andRemark 5.41, aswell as [CDM18,
Proposition 3.1.9]. They give in particular a very concrete description of the action
of the Frobenius morphism φM in some bases adapted to the descent data.

5.4.3 Frobenius-twist self-dual Kisin modules and associated Galois
representations

As for inertial types, we have a notion of Frobenius-twist self-duality for Kisin
modules. Let σ denote the automorphism of SR that is given by the identity map
on R, fixes u, and is given by the arithmetic Frobenius ϕ−1 on Zp2 . Given a Kisin
module (M, φM) in Yτ(R), its pullback σ∗M by σ defines an object of Yσ

∗τ(R),
where σ∗τ is the Frobenius-twist of τ introduced in Definition 5.19. We obtain this
way a functor fromYτ(R) toYσ

∗τ(R), which can be iterated via successive pullbacks
by σ. On the other hand, if R is local Artinian, we define the Cartier dual of M as
M∨ := HomSR (M,SR). The next proposition ensures that this definition gives what
one can expect from Cartier duality in this context, and shows in particular that it is
compatible with duality for inertial types.

Proposition 5.28 Assume that R is Artinian. Then the map sendingM toM∨ induces
an involutive functor from Yτ(R) into Yτ

∨

(R).

Proof This comes from the first statement in [KM20, Proposition 5.12]. �

In particular, if τ is Frobenius-twist self-dual, then σ∗M and M∨ both belong
to Yτ

∨

(R) = Yσ
∗τ(R). This enables the following definition of polarisation for

Kisin modules, which actually mimics the corresponding notion for continuous
two-dimensional R-linear representations of ΓQ

p2 (Definition 5.23).

Definition 5.29 Assume that R is Artinian and that τ is Frobenius-twist self-dual,
and let (M, φM ) be an object of Yτ(R). A polarisation on the Kisin moduleM is an
isomorphism ι : σ∗M ∼

−→ M∨ in Yτ
∨

(R) such that the composite map

M
can
−→ σ∗ (σ∗M)

σ∗ι
−→ σ∗

(
M
∨
) can
−→ (σ∗M)∨

(ι∨)−1

−→ M .

is equal to − idM.

We let Yτpol(R) be the category of Frobenius-twist self-dual Kisin modules (of type
τ): its objects are pairs (M, ι) withM an object of Yτ(R) and ι a polarisation onM,
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and morphisms in Yτpol(R) are given by morphisms in Yτ(R) that commute with the
given polarisations.

Frobenius-twist self-dual Kisin modules are closely related to polarised Galois
representations, hence to C-parameters, introduced in Definition 5.23. Indeed, let
us fix a sequence of compatible pn-th roots of −p in Qp , which means a sequence
(pn)n≥0 of elements of Qp such that p0 = −p and pp

n+1 = pn for any integer n ≥ 0.
For any k ≥ 1, set

Qpk ,∞ :=
⋃
n≥0
Qpk (pn) .

Following [LLHLM18, Section 2.3], one can naturally define a contravariant functor
T∗dd from Yτ(R) to the category of R-linear representations of ΓQ

p2 ,∞
. The following

statement essentially claims that if τ is a reasonable type, any tamely ramified p-
modular C-parameter with cyclotomic multiplier comes from at most one Kisin
module in Yτ(k).

Lemma 5.30 Let ρ̄ : ΓQp →
CG be a tamely ramified C-parameter with cyclotomic

multiplier and let τ : IQ
p2 → GL2(O) be a 2-generic principal series inertial

type that is Frobenius-twist self dual. Then there exists at most one Kisin module
M ∈ Yτ(k) such that T∗dd

(
M

)
' BC(ρ̄)|ΓQ

p2 ,∞
. Moreover, if such an M exists, then

there exists a unique polarisation ῑ on M that is compatible (under the previous
isomorphism) with the polarisation defined by ρ̄ through the bijection of Theorem
5.24.

Proof This is [KM20, Lemma 5.19], which is an analogue of [LLHLM18, Theorem
3.2] for the unitary group G. �

Note that the existence ofM as above is a necessary condition for the ring Rτρ̄ to be
non-zero. Also note that the genericity assumption is what ensures the uniqueness of
M when it exists. Hence, from now on, we will always assume that τ is a 2-generic
principal series Frobenius-twist self-dual inertial type. Lemma 5.30 suggests that
deforming Kisin modules may be a good way to approach deformations of C-
parameters and the quite explicit nature of these modules suggests that deforming
them may give rise to quite explicit rings. The next (and last) subsection will make
these expectations a bit more precise under some genericity assumption on ρ̄.

5.5 Some explicit deformation rings for C-parameters

The goal of this last part is to give some explicit calculations of deformation rings for
deformations of C-parameters with prescribed inertial type. We fix a principal series
inertial type τ that is 2-generic (in the sense of Definition 5.6). We write τ = η1 ⊕ η2
and we fix the ordering of these two characters. For convenience of writing, we set
v := up2−1.
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5.5.1 Shape of a Kisin module over k

In order to deform objects of Yτ(k), it would be helpful to have a classification of
those. A way to distinguish between them is to introduce the notion of shape of such
modules: this is the goal of this first subsection, and it requires some preliminary
notations an definitions that are valid over any object R of Art(O).

Given a Kisin module M ∈ Y [0,1],τ(R), we know from Section 5.4.2 that the
underlying R[[u]]-module decomposes as M(0) ⊕ M(1). To take into account the
action ofGal(L/Qp) on these components (via τ), we introduce the following R[[v]]-
submodules ofM.

Definition 5.31 For i in {0,1} and j in {1,2}, we write M(i)j for the ηj-isotypical
component of M(i), i.e. for the R[[v]]-submodule of elements of M(i) on which
Gal(L/Qp) acts by ηj . Similarly, we write ϕM(i)j for the ηj-isotypical component of
ϕ∗

(
M(i)

)
Since we have ϕ∗

(
M(i)

)
=

(
ϕ∗M

) (i+1) (considering i + 1 mod 2 in the exponent if
necessary), we can restrict φM to ϕM

(i)
j to get a map φ(i)

M, j
: ϕM(i)j → M

(i+1)
j .

Definition 5.32 An eigenbasis of M is a pair β =
(
β(0), β(1)

)
such that, for any i in

{0,1}, β(i) is an ordered basis
(

f (i)1 , f (i)2

)
of the R[[u]]-module M(i) that satisfies:

f (i)1 ∈ M
(i)
1 and f (i)2 ∈ M

(i)
2 .

Just like above Definition 5.6, we write the inertial type τ as ω̃−a1
2 ⊕ ω̃−a2

2 , with
a1 and a2 between 0 and p2 − 2 (recall that we have fixed the ordering of the two
characters in τ). For j in {0,1}, we write aj in p-basis:

aj = aj ,0 + aj ,1p, with (aj ,0,aj ,1) ∈ {0; p − 1}2

To keep track of the action of τ on each of the factorsM(i) (corresponding to the two
embeddings of Zp2 into E), we also define, for j in {0,1}:{

a(0)j = aj

a(1)j = aj ,1 + aj ,0p.

Recall that W is the Weyl group of G, which is canonically isomorphic toS2.

Definition 5.33 An orientation of τ is a pair (w0,w1) of elements of W ' S2 such
that:

∀ i ∈ {0,1}, a(i)
wi (1)

≥ a(i)
wi (2)

. (13)

Remark 5.34 As τ is assumed to be 2-generic, its orientation is uniquely defined.
The 2-genericity assumption (see (7)) implies indeed that the inequalities (13) must
be strict.
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Remark 5.34 ensures that we can talk about the orientation (w0,w1) of τ. We then
have the following result, which gives convenient bases for the isotypical components
associatedwithw0(2) andw1(2), and is straightforward to check fromDefinition 5.32.

Proposition 5.35 Let β =
(
β(0), β(1)

)
be an eigenbasis of M. With the notation of

Definition 5.32, we set1, for all i ∈ {0,1},

β
(i)

wi (2)
:=

(
ua(i)

wi (1)
−a(i)

wi (2) f (i)
wi (1)

, f (i)
wi (2)

)
and ϕβ

(i−1)
wi (2)

:=
(
ua(i)

wi (1)
−a(i)

wi (2) ⊗ f (i−1)
wi (1)

, 1 ⊗ f (i−1)
wi (2)

)
.

Then β
(i)

wi (2)
is a basis of the R[[v]]-module M(i)

wi (2)
, and ϕβ

(i−1)
wi (2)

is a basis of the
R[[v]]-module ϕM(i−1)

wi (2)
.

The next definitions and proposition justify the name “convenient bases" used above.

Definition 5.36 Given an eigenbasis β ofM and an index i ∈ {0,1}, we define A(i)β ∈

M2(R[[v]]) as the matrix of the R[[v]]-linear map φ(i)
M,wi+1(2)

: ϕM(i)
wi+1(2)

→ M
(i+1)
wi+1(2)

when ϕM
(i)

wi+1(2)
is endowed with the basis ϕβ(i)

wi+1(2)
and M(i+1)

wi+1(2)
is endowed with

the basis β(i+1)
wi+1(2)

. The matrix A(i)β is called the matrix of the partial Frobenius ofM
at embbeding i and with respect to β.

Proposition 5.37 Let M ∈ Yτ(k) be a Kisin module over k. Then there exists an
eigenbasis β of M such that each of the matrices A(0)β and A(1)β has one of the
following forms (with c̄i, j ∈ k and c̄∗i, j ∈ k×):

w̃i t t′ w

A(i)
β

(
vc̄∗1,1 0
vc̄2,1 c̄∗2,2

) (
c̄∗1,1 c̄1,2
0 vc̄∗2,2

) (
0 c̄∗1,2

vc̄∗2,1 0

)
Moreover, the pair (w̃0, w̃1) in {t, t′,w}2 determined that way does not depend on the
choice of the eigenbasis β, but only on the Kisin moduleM.

Definition 5.38 The pair (w̃0, w̃1) given by Proposition 5.37 is called the shape of
M.

Remark 5.39 The actual definition of the shape involves the extended Weyl group of
G, but we choose to give this handy definition to avoid extra technicalities in this
survey paper. For more details on the way to define the shape via Weyl elements, we
suggest to refer to [KM20, Section 5.1.9].

1 With i − 1 replaced by 1 in the second formula if i = 0, as usual.
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5.5.2 A deformation problem for Kisin modules

In this penultimate subsection, we define a deformation problem for Frobenius-twist
self-dual Kisin modules related to the deformation ring we introduced in Section
5.3.3 for C-parameters. We have a precise understanding of the form of the Kisin
modules for any local Artinian R, generalising Proposition 5.37, which holds for
the finite field k. This understanding leads to a very explicit description of the ring
representing these deformations of Kisin modules (Theorem 5.45). We first require
a basis compatible with all the structures (descent data, polarisation) on the Kisin
modules. We introduce this basis now.

Definition 5.40 LetM be inYτ(R) and (w̃0, w̃1) be the shape of its reductionM ⊗R k
to k.

• A gauge basis ofM is an eigenbasis β ofM such that the matrices of the partial
Frobenius

(
A(0)β , A

(1)
β

)
have the form in the table below, prescribed by the shape

ofM (with ci, j in R, c∗i, j in R× and ci,i in R \ R×).

w̃i t t′ w

A(i)β

(
(v + p)c∗1,1 0

vc2,1 c∗2,2

) (
c∗1,1 c1,2
0 (v + p)c∗2,2

) (
c1,1 c∗1,2
vc∗2,1 c2,2

)
c1,1c2,2 = −pc∗1,2c∗2,1

• If moreover the inertial type τ is Frobenius-twist self-dual, R is local Artinian and
ι is a polarisation onM, a gauge basis β is called compatible with ι if it satisfies:
ι (σ∗β) = (1,−1)β∨.

Remark 5.41 For R = k, a gauge basis is an eigenbasis such that the matrices of the
partial Frobenius have the form in the table of Proposition 5.37. For general local
Artinian R, compatible gauge bases exist by analogues of [LLHLM18, Theorem 4.1]
and [KM20, Proposition 5.17].

From now on, we assume that τ is Frobenius-twist self-dual. Recalling that
s =

( 0 1
1 0

)
is also a lift in G of the non-trivial element of W , we can state the

following result [KM20, Lemma 5.18(i)].

Lemma 5.42 Let (M, ι) be an object of Yτpol(R) and let β be a gauge basis of M
compatible with ι. Then we have the following matrices relation:

A(0)β = (v + p)s
(
A(1)β

)−t
s .

Remark 5.43 Note that this relation implies in particular that the shape of an object
(M, ι) ∈ Yτpol(k) is necessarily of the form (w̃, w̃), i.e. that w̃0 = w̃1 [KM20, Lemma
5.17 (i)].
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We are now ready to define the aforementioned nice deformation problem for
Frobenius-twist self-dual Kisin modules over k.

Definition 5.44 Let τ be a 2-generic principal series type that is Frobenius-twist
self-dual. Let (M, ι) be an object of Yτpol(k) and let β be a gauge basis on M that

is compatible with ι. For any ring R in Art(O), we define Dτ,β

M,pol
(R) as the set

of quadruples (MR, ιR, R, βR), where (MR, ιR) is an object of Yτpol(R), R is an
isomorphism fromMR ⊗R k toM such that

(
∨R

)−1
◦ (ιR ⊗R k) = ῑ ◦ σ∗ R , and βR

is a gauge basis ofM, compatible with ιR and lifting β (by R).

According to [KM20, Section 5.3.1], this defines a functor Dτ,β

M,pol
that is repre-

sentable by some object Rτ,β
M,pol

∈ Noe(O). The latter ring has the following explicit
description [KM20, Theorem 5.18], which can be deduced from the previous results
once we note that the choice of a triple (MR, ιR, βR) as above is equivalent to the
choice of a matrix A(1)βR whose form is prescribed by the shape of M in the table of
Definition 5.40.

Theorem 5.45 We keep the previous notation and assumptions. In particular, we let
(w̃, w̃) be the shape of M. Then Rτ,β

M,pol
is isomorphic to the ring Rexpl

w̃
given by the

following table (the variables xi, j correspond to the coefficients c∗i, j − [c
∗
i, j] of the

universal matrices in the table of Definition 5.40).

w̃ t t′ w

Rexpl
w̃
O[[c2,1, x∗1,1, x

∗
2,2]] O[[c1,2, x∗1,1, x

∗
2,2]] O[[x1,1, y2,2, x∗1,2, x

∗
2,1]]/(x1,1y2,2 + p)

In particular, the form of Rτ,β
M,pol

only depends on the shape ofM.

5.5.3 Some consequences on deformations of C-parameters

Let ρ̄ : ΓQp →
CG be a tamely ramified p-modular C-parameter and let τ : IQ

p2 →

GL2(O) be a principal series inertial type that is Frobenius-twist self-dual. Further
assume that ρ̄ is 1-generic, that τ is 2-generic, and that there exists a Kisin module in
M ∈ Yτ(k) such that T∗dd

(
M

)
� BC(ρ̄) |ΓQ

p2 ,∞
. In this case, we know from Lemma

5.30 that such a Kisin module is unique and that it comes with a natural polarisation
ι. This ensures that it makes sense to define the shape of ρ̄ with respect to τ as the
shape of the corresponding Frobenius-twist self-dual Kisin module (M, ι). Remark
5.43 shows that this shape is of the form (w̃, w̃), and our assumption allow us to use
the previous results, and in particular the explicit formulae given by Theorem 5.45.
This leads to the following result, which is a reformulation in this context of [KM20,
(5.3.2)].
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Theorem 5.46 We have an isomorphism of formal series rings of the following form:

Rτρ̄[[S1,S2]] � Rexpl
w̃
[[T1,T2,T3,T4]] .

Note that Theorem 5.46 does not completely describe Rτρ̄ , as it does not describe
the image of this subring under the given isomorphism. To fully understand the
deformation problem Dτ

ρ̄, we now plan to solve the following problem.

•? Question 3

Can we explicitly determine the deformation ring Rτρ̄ , without the variables S1,S2?

The isomorphism of [KM20, (5.3.2)] is valid for deformations of the absolute Ga-
lois group ofQp f (not onlyQp). In this broader context, it identifies Rτρ̄[[S1, . . . ,S2 f ]]

and Rexpl
w̃
[[T1,T2,T3,T4]], Rexpl

w̃
being the completed tensor product of f explicit de-

formation rings (one for each factor (see (12)) of the Kisin module). The additional
formal smooth variables S1, . . . ,S2 f and T1,T2,T3,T4 correspond respectively to the
gauge basis on the polarised Kisin module and the framing on the Galois represen-
tation. Thus, we expect the f pairs of variables Si to correspond to the f factors of
the ring Rexpl

w̃
.
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