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This manuscript reports on an ongoing joint work with Julien Hauseux, on which is
based the talk I gave on January 2020 at the RIMS workshop "Analytic, geometric and
p-adic aspects of automorphic forms and L-functions". I thank Shunsuke Yamana for
inviting me to participate to this very nice workshop and for the invitation to speak there.
For more details on the work described below, e.g. statements in their full generality or
further details of proofs, please refer to our paper with Hauseux [3]. For any question or
comment on this work, please feel free to email me (Ramla.Abdellatif@u-picardie.fr).

1. Context and motivation : the GL2 case

1.1. What is the context? Let p be a prime number and F be a non-Archimedean local
field with finite residue field kF of characteristic p (hence F is either a finite extension of
the field of p-adic numbers Qp, or a Laurent series field with coefficients in kF ). Let OF
be its ring of integers and pF be its maximal ideal. Given a connected reductive group
G defined over F , a long-standing question in representation theory has been to classify
all (isomorphism classes of) smooth1 representations of the topological group G := G(F )
over any given algebraically closed field C of characteristic p. This question is at the
heart of current exciting developments in number theory, since it is directly (motivated
by and) connected to p-modular and p-adic Langlands correspondences, as well as to
congruences between modular forms or Galois representations.

Even classifying irreducible smooth representations of G in characteristic p is a hard
challenge, and not much is known so far. Thanks to the work of many people, as [5, 6, 7]
for GL2, or [1, 4, 11, 13] for more general G, we know that such representations separate
between non-supercuspidal and supercuspidal representations: the former are quite well
understood (see [2] when G is of relative rank 1, or [4] for arbitrary G), while the latter are
still really mysterious. Note that in this context, we do not have access to the usual tools
of harmonical analysis (such as Haar measures, that do not exist in natural characterstic)
nor to classical type theory (as everything would then be of level 0). Also recall that,
in the Langlands philosophy, supercuspidal representations of G are conjecturally the
counterpart of irreducible Galois representations, hence they are of great importance.

So far, the full classification of supercuspidal representations of G is only known in
three cases [1, 7, 11], which all require F = Qp and G to be of relative rank 1 over Qp.
Apart from this, very few things are known about supercuspidal representations, even for
G = GL2(F ), and most of the results proven for now only show that going to arbitrary F

1Recall that a representation of G is smooth when every vector has open stabiliser in G.
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will certainly be extremely difficult, see for instance in [8, 10, 12, 15]. Any positive result
about supercuspidal representations for arbitrary F would hence be warmly welcome.

1.2. What is the motivation? Let us start by focusing on the case where G = GL2 and
no assumption is done on F . If B denotes the subgroup of upper triangular matrices in
G = GL2(F ), then we know from [5, 6] that (isomorphism classes of) irreducible smooth
representations of G split into four families (and that there is no non-trivial isomorphism
among non-supercuspidal representations up to twists by smooth characters of G):

• one-dimensional representations χ ◦ det with χ : F× → C× a smooth character;
• principal series representations, which are parabolically induced representations
of the form IndGB(χ1⊗χ2) where χ1, χ2 : F× → C× are distinct smooth characters;
• special series representations StG ⊗ (χ ◦ det), where StG denotes the Steinberg
representation and χ : F× → C× is a smooth character;
• supercuspidal (or supersingular2) representations.

As already mentioned above, the last family remains very mysterious when F 6= Qp, and
new tools and ideas are required to make any progress. Among the numerous people who
work hard on this problem, Paškūnas studied the structure of C[B]-module carried by
these representations (now seen as representations of B) and proved the following result
[14, Theorem 1.1], where Fp denotes an algebraic closure of the residue field of F .

Theorem 1.1 (Paškūnas 2007). Let π and π′ be smooth representations of G over Fp.
Assume that π is irreducible and has central character.

(1) The Fp[B]-module π|B is of finite length at most 2, with equality iff π is a principal
series representation.

(2) If π is not a special series representation, then the canonical restriction map

HomG(π, π′)
'−→ HomB(π|B, π′|B)

is an isomorphism of Fp-vector spaces.
(3) The restriction map (as in the previous statement) induces an isomorphism of

Fp-vector spaces

HomG(IndGB(1), π′)
'−→ HomB(StG|B, π′|B) .

In particular, this theorem shows that supercuspidal representations of GL2(F ) remain
irreductible when seen as representations of B, and that their isomorphism classes (as
representations of G) are completely determined by their isomorphism classes as rep-
resentations of B, which seem more accessible (see for instance [16]). Note that these
results can moreover be lifted to characteristic 0 to get a p-adic counterpart relative to
unitary Banach representations of GL2(F ), see [14, Section 6] for precise statements.

One of the motivations of our work with Hauseux is to answer the following question:
to what extent do the previous theorem hold for other groups than GL2(F )?

2I do not want to define supersingularity as it would require a lot of efforts that are unnecessary here.
Let me just point out that the fact that being supercuspidal is equivalent to being supersingular is a
very difficult theorem, see the references given in the bibliography for more information.
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1.3. Beyond GL2(F ): some limits of Paškūnas’ proof. Paškūnas’ proof of Theorem
1.1 distinguish between non-supercuspidal and supercuspidal representations, the latter
being the most interesting part of the result. In the supercuspidal case, the proof of the
theorem heavily relies on the following lemma, where I(1) is the standard pro-p-Iwahori
subgroup3 of G, $F is a fixed uniformiser of F and [.] : kF → OF is the Teichmüller lift.

Lemma 1.2 (Paškūnas 2007). Set Σ :=
∑
λ∈kF

(
$F [λ]
0 1

)
and s :=

(
0 1
1 0

)
.

Let π be a smooth representation of G and let v ∈ πI(1) be a non-zero vector4.

(1) If Σv = 0, then sv = −
∑
λ∈k×F

(
−$F [λ−1] 1

0 $−1
F [λ]

)
v belongs to 〈B · v〉 ⊂ π.

(2) If π is supercuspidal (hence irreducible by definition) and if 〈GL2(OF ) · v〉 ⊂ π is
irreducible (as representation of GL2(OF )), then there exists a positive integer n
such that Σnv = 0.

An important point here is that the matrices of B appearing in the decomposition of
sv in 〈B · v〉 do not depend on the element v. Another keystone to prove the second
assertion is that for GL2(F ), supersingularity (that is equivalent here to supercuspidality)
is by definition very closely related to the vanishing of Σ (see [14, Lemma 3.1] for more
information). This last feature fails when one is interested in other groups than GL2(F )
(see [4]), even for rank 1 groups as GL2(D) with D a division algebra over F (see [13]).
Moreover, the proof of Paškūnas uses in a non-trivial way several other specificities of
GL2(F ), such as some combinatorial correspondences related to the Bruhat-Tits tree, or
very explicit matrix calculations that cannot be carried out similarly in other settings, and
distinguish between cases that seem a bit artificial at first (depending on the dimension
of σ, with the notation of [14]). One can transfer Paškūnas’ proof to some groups closely
related to GL2(F ) (as SL2(F ), in an unpublished work of the author): it only brings
further technicalities and does not help to find a natural way to generalise Theorem 1.1.

2. Main results of our work

2.1. Notations. From now on, G denotes a connected reductive group of relative rank 1
over F . For the simplicity of the exposition, I assume thatG is quasi-split over F , thought
results and proofs actually hold without this assumption. Let S be a maximal split torus
in G and T be its centraliser in G. Let W = 〈w0〉 ' Z/2Z denote the Weyl group of G.
Let B = TU be a Borel subgroup5 with unipotent radical U and B = Bw0 = TU be its
opposite Borel subgroup (with respect to T ).

Fix a special point x0 in the apartment corresponding to S in the semisimple Bruhat-
Tits building X of G and let K be its stabiliser in G : it is a special parahoric subgroup of
G and we writeK(1) for its pro-p-radical. AsK is special, one can choose a representative
of w0 (that will be denoted w0 again) in N ∩K, where N is the normaliser of S in G.

3Recall that I(1) denotes the subgroup of matrices in GL2(OF ) whose reduction modulo pF is upper-
triangular and unipotent.

4Such a non-sero I(1)-invariant vector always exists by [6, Lemma 1].
5In general, B is a minimal parabolic subgroup of G but its Levi part is not necessarily a torus.
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Now fix an alcove of X based at x0. Its pointwise stabiliser I is called a standard Iwahori
subgroup of G, and the pro-p-radical I(1) of I is a standard pro-p-Iwahori subgroup of G.

Let U0 be a fixed open compact subgroup of U∩K and let T+ :=
{
t ∈ T | t−1U0t ⊂ U0

}
be the monoid of elements in T that contract U0. It contains a distinguished element t0
that can be easily defined in the quasi-split case since we can set t0 = λ($F ), where λ
is a generator of the group X∗(S) of algebraic cocharacters of S. In particular, we hence
have S/S ∩K ' tZ0 .

2.2. Statement of the main results. Our first result consist in a suitable generalisa-
tion of Paškūnas’ key lemma for rank 1 groups. Its statement is very close to Paškūnas’
original lemma, up to the definition of the operator replacing Σ, which is more algebraic
and less combinatorial. Nevertheless, note that we naturally recover Lemma 1.2 when

G = GL2: by taking U0 = U ∩GL2(OF ), t0 =

(
$F 0
0 1

)
and w0 = s, one gets Σ0 = Σ.

Lemma 2.1 (Abdellatif-Hauseux 2019). Let π be a smooth representation of G over Fp.
Set Σ0 :=

∑
u∈U0/t

−1
0 U0t0

ut0.

(1) If v ∈ πI(1) satisfies Σ0v = 0, then w0 · v belongs to 〈B · v〉 and the form of its
decomposition along B does not depend on the choice of v.

(2) If π is an (irreducible) admissible supercuspidal representation of G, then:

∀ v ∈ πU0 , ∃ n ≥ 1 | Σn
0v = 0 .

A very satisfying point is that our proof does not require any strange distinction as
Paškūnas’ one on the dimension of σ. This is pleasant as it gives a uniform argument
even in the GL2 case. Also note that it requires a bit of care to get the independence of
the decomposition along B, as one must check first that πI(1) is actually T -stable, which
is true by Iwahori decomposition (used with the suitable order on factors).

Once this key lemma is proven, we can show the following theorem, which basically
states that Theorem 1.1 holds for relative rank 1 groups.

Theorem 2.2 (Abdellatif-Hauseux 2019). Let π and π′ be smooth representations of G
over Fp. Assume that π is irreducible and admissible.

(1) The Fp[B]-module π|B is of finite length at most 2, with equality iff π is a principal
series representation.

(2) If π is not a special series representation, then the canonical restriction map

HomG(π, π′)
'−→ HomB(π|B, π′|B)

is an isomorphism of Fp-vector spaces.
(3) The restriction map (as in the previous statement) induces an isomorphism of

Fp-vector spaces

HomG(IndGB(1), π′)
'−→ HomB(StG|B, π′|B) .

Before I explain the main ideas behind the proofs of these results, I want to do some
remarks about these statements and their importance.
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• The admissibility assumption made on π is here to ensure that the equivalence
between supercuspidality and supersingularity is valid [4, Theorem VI.2]. When
one drops the admissibility assumption, the key lemma (and hence the theorem)
hold for supersingular representations, but the latter may a priori not be enough
to cover all supercuspidal representations. (A hard open question is to determine
to what extent supersingularity and supercuspidality are actually equivalent.)
• The major novelty here is the supercuspidal case: indeed, the structure of Fp[B]-
modules carried by non-supercuspidal representations of G when G is quasi-split
of rank 1 was already known from one of my previous work [2]. Nevertheless, I
should precise that in [3], we do not assume any splitting assumption on G, hence
we also prove new complete results in the non-supercuspidal case, as the latter
was not fully understood when G is non-split (besides some partial results of Ly
[13] for GL2(D), nothing was done in that direction).
• Let me emphasize once more the fact that a very interesting feature of our work
is that it gives a nice interpretation of Paškūnas’ original calculation for GL2(F ),
and makes this special case fit into the wider picture of relative rank 1 groups.
This gives the hope that similar results should hold for higher rank groups, as
GLn(F ) for n ≥ 3 for instance (which is a part of a work in progress).

3. Main tools and ideas of proofs

In this last section, I want to introduce the main ideas and tools that allowed us to
prove Lemma 2.1 and Theorem 2.2. The upshot is as follows.

• The non-supercuspidal case is not the most exciting part: Vignéras did most of
the job for split groups in [17], I made it for quasi-split groups of rank 1 in [2], so
our job here was basically to define the correct setting so that non-split groups
also fit in. It is technical but does not require new deep ideas.
• The operator Σ that shows up in the key lemma (Lemma 2.1) actually trans-
fers the value of the ordinary parts functor, as defined by Emerton (see the next
subsection for a quick overview, and [9] for a complete lecture), and to be super-
singular (or finite-dimensional, see below) amounts to have null ordinary parts.
• Computing ordinary parts for rank 1 groups is not too difficult...

3.1. Recollection on ordinary parts. The references for the content of this subsection
are [9] and [18]. Note that it holds for G a connected reductive group of arbitrary rank.
Let P be a parabolic subgroup of G and P = LU be a Levi decomposition of P . For
any subgroup Γ of G, denote by Mod∞Γ the category of smooth representations of Γ over
Fp. We know from Frobenius reciprocity that the restriction functor Mod∞G → Mod∞L is
left-adjoint to the parabolic induction functor IndGP :

∀ σ ∈ Mod∞L , ∀ π ∈ Mod∞G , HomG(π, IndGP (σ)) ' HomL(π|L, σ) .

(The inflation from L to P is naturally obtained by letting U act trivially.) This ad-
junction property is useful to study (irreducible) subrepresentations of IndGP (σ), which
are by definition non-supercuspidal representations of G. Similarly, it would be nice to
have a right adjoint for this restriction functor, as it would help to identify quotients of
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IndGP (σ), hence to get a better grasp on supercuspidal representations (by playing with
right and left adjunction properties).

In [9], Emerton defines this right adjoint functor, called the (P -)ordinary parts functor,
as follows. (Note that [9] requires F to be of characteristic 0, but Vignéras’ later work
[18] ensures that everything actually makes sense for arbitrary F ). As before, let U0

be an open compact subgroup of U ∩ K and L+ be the monoid of elements in L that
contract U0. Following [9, Definition 3.1.3], any smooth representation π of G over Fp
comes with a Hecke action of L+ on πU0 , namely:

∀ t ∈ L+, ∀ v ∈ πU0 , t ? v :=
∑

u∈U0/t−1U0t

utv .

As in [9, Definition 3.1.9], we set OrdP (π) := HomFp[L+](Fp[L], πU0)L-finite, which is an
object of Mod∞L . It is not too difficult to check that this definition does not depend on the
choice of U0, and that we actually get a functor OrdP : Mod∞G → Mod∞L . The main result
is the following theorem, which gives the adjunction formula we hoped for, provided we
consider induction from the opposite parabolic subgroup when using P -ordinary parts.

Theorem 3.1 (Main Adjunction Formula, Emerton 2010-Vignéras 2016). Let σ be an
admissible smooth representation of L and π be a smooth representation of G. If P is
the opposite parabolic subgroup to P relatively to L, then:

HomG(IndG
P

(σ), π)
'−→ HomL(σ,OrdP (π))

As a consquence, we get that an irreducible admissible smooth representation π of G
is right cuspidal (i.e. either finite-dimensional or supercuspidal) iff OrdP (π) = 0 for any
proper parabolic subgroup P of G.

3.2. Application to the rank 1 (quasi-split) case. Now assume that G has relative
rank 1 over F and use the notations of Section 2. One can then see that the operator
Σ0 of Lemma 2.1 is nothing but the Hecke action of t0 on πU0 , which contains πI(1) as
U0 ⊂ U ∩K ⊂ I(1). The vanishing property required in this lemma is hence naturally
connected to the vanishing of some ordinary parts. More precisely, we have the following
result, which comes from a quite straightforward calculation.

Proposition 3.2 (Abdellatif-Hauseux 2019). Let π be an irreducible smooth representa-
tion of G. Then

OrdB(π) ' Fp[X±1]⊗Fp[X] π
U0 ,

where X corresponds to the Hecke action of t0 on πU0.

As expected, this shows that the vanishing of OrdB(π) corresponds to the fact that t0
acts locally nilpotently on πU0 , hence the proof of Lemma 2.1 for supercuspidal represen-
tations is quite straightforward (up to some subtleties pointed out earlier). Let me close
this exposition by a sketch of the proof of Theorem 2.2 in the supersingular case.

• First, I explain how to prove the irreducibility of π|B when π is supersingular (i.e.
supercuspidal as π is assumed to be admissible in the statement of Theorem 2.2).
Let v be a non-zero vector of π. By smoothness of π and Iwahori decomposition
relative to I(1), we get that 〈B · v〉 ∩ πI(1) is non-zero (since we actually have
〈I(1)tk0v〉 ⊂ 〈(B ∩ I(1))tk0v〉 for any integer k). Note that this first step is not
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straightforward at all, and requires some arguments to prove that this intersection
contains some tk0v for a well-chosen k ∈ Z.

Now let x0 be a non-zero element of 〈B · v〉 ∩ πI(1). The second statement of
Lemma 2.1 ensures the existence of a minimal n ≥ 1 such that x1 := tn−1

0 x0 is
non-zero and Σ0x1 = 0. This last condition implies, thanks to the first statement
of Lemma 2.1, that w0x1 belongs to 〈B·x1〉 ⊂ 〈B·x0〉. By Birkhoff decomposition,
we now get that π = 〈G · x1〉 = 〈B · x1〉 ⊂ 〈B · x0〉 ⊂ 〈B · v〉 ⊂ π, where the first
and last equalities come from the irreducibility of π. This proves in particular
that π = 〈B · v〉 for any non-zero element v of π, and π is hence an irreducible
representation of B.
• Now I explain how to get the assertion on the Hom spaces. Let π′ be any smooth
representation of G, and still assume that π is supersingular (and irreducible).
The injectivity of the canonical linear map HomG(π, π′)→ HomB(π, π′) is clear,
so let us focus on its surjectivity. Let Φ ∈ HomB(π, π′) be a non-zero homo-
morphism: as π is irreducible, Φ must be injective. To prove that Φ is ac-
tually G-equivariant, pick a non-zero vector v ∈ πI(1), then a non-zero vector
v0 ∈ 〈B · v〉 ∩πI(1), which exists by what we did above to prove the irreducibility
of π|B. By a classical smoothness and filtration argument, one checks that Φ(v0)
is a non-zero I(1)-invariant vector of π′. More generally, set vn+1 := Σ0vn for
any n ≥ 0: since Σ0 and Φ commute (by B-equivariance of Φ), one can prove
by induction on n that vn and Φ(vn) are I(1)-invariant vectors (respectively of
π and π′). But the second statement of Lemma 2.1 applied to v0 ensures the
existence of a minimal integer n0 ≥ 1 such that vn0+1 = 0, hence such that
w0vn0 ∈ 〈B ·vn0〉 and w0Φ(vn0) ∈ 〈B ·Φ(vn0)〉 with a decomposition along B that
does not depend on the chosen vector. In particular, as Φ is B-equivariant, this
shows that w0Φ(vn0) = Φ(w0vn0), hence that gΦ(vn0) = Φ(gvn0) for any g ∈ G
(by Birkhoff decomposition). By minimality of n0, vn0 is non-zero, hence we have
π = 〈G · vn0〉 by irreducibility of π, and Φ is actually G-equivariant, as expected.

References

[1] R. Abdellatif, Classification des représentations modulo p de SL(2, F ), Bull. Soc. Math. France 142
(2014), no. 3, 537–589.

[2] R. Abdellatif, Induction parabolique modulo p pour les groupes p-adiques quasi-déployés de rang 1,
preprint (2013).

[3] R. Abdellatif, J. Hauseux, Restricting irreducible smooth representations of p-adic groups to minimal
parabolic subgroups: the rank 1 case, preprint (2020)

[4] N. Abe, G. Henniart, F. Herzig, M.-F. Vignéras, A classification of irreducible admissible mod p
representations of p-adic reductive groups, J. of the Amer. Math. Soc. 30 (2017), no. 2, 495–559.

[5] L. Barthel, R. Livné, Irreducible modular representations of GL(2) of a local field, Duke Math. J.
75 (1994), no. 2, 261–292.

[6] L. Barthel, R. Livné, Modular representations of GL2 of a local field: The ordinary, unramified case,
J. Number Theory 55 (1995), 1–27.

[7] Ch. Breuil, Sur quelques représentations modulaires et p-adiques de GL2(Qp), I, Compositio Math.
138 (2003), no. 2, 165–188.
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[14] V. Paškūnas, On the restriction of representations of GL2(F ) to a Borel subgroup, Compositio Math.
143 (2007), 1533–1544.

[15] B. Schraen, Sur la présentation des représentations supersingulières de GL2(F ), J. Reine. Angew.
Math. 704 (2015), 187–208.

[16] M. Vienney, Construction de (ϕ,Γ)-modules en caractéristique p, Thèse de Doctorat (2012), Ecole
Normale Supérieure de Lyon.

[17] M.-F. Vignéras, Série principale modulo p de groupes réductifs p-adiques, GAFA 17 (2008), 2090–
2118.

[18] M.-F. Vignéras, The right adjoint of the parabolic induction, Hirzebruch Volume Proceedings Ar-
beitstagung 2013, Birkhäuser Progress in Math. 319 (2016), 405–424.

Laboratoire Amiénois de Mathématique Fondamentale et Appliquée, Université de Pi-
cardie Jules Verne, 33, rue Saint-Leu, 80 039 Amiens Cedex 1, France


